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Abstract— Convolutional neural networks (CNNs) are widely
employed in modern computer vision algorithms, where the input
image is convolved iteratively by many filters to extract the
knowledge behind it. However, while the depth of convolutional
layers gets deeper and deeper in recent years, the enormous
computational complexity makes it difficult to be deployed on
embedded systems with limited hardware resources. In this
paper, inspired by rate-distortion optimization in image and video
coding, we propose a computation-performance optimization
(CPO) method to remove the redundant convolution filters in
a CNN with performance constraints. To prove the effectiveness
of the proposed method, CPO is applied to the networks for
image super-resolution and image classification. Under almost the
same PSNR drop and accuracy drop for performance evaluation
in these two tasks, we can achieve the best parameter and
computation reduction when compared with previous works.

Index Terms— Filter pruning, redundancy reduction,
computation-performance optimization, convolutional neural
networks.

I. INTRODUCTION

CONVOLUTIONAL Neural Network (CNN) has been
widely used since it attained significant improvement the

first time on ImageNet Classification Challenge [1]. In recent
years, various advanced architectures of Convolutional Neural
Network (CNN) are proposed [2], [3], which achieve state-of-
the-art performance on many computer vision tasks, such as
image segmentation [4], object detection [5], and image super
resolution [6]. The general trend of designing a well-performed
network is making it deeper and more complex. However,
it also increases the number of parameters and convolution
operations at the same time, which means it will consume
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substantial storage and computational resources. Commonly,
we can conduct the training stage of deep CNNs on high-
performance GPU clusters, but for the Internet of Things (IoT)
applications, we consider more about the inference stage on
local devices with lower computation ability, such as mobile
phones or surveillance cameras. Local computation on embed-
ded system is more preferred than cloud-based solution owing
to the real-time processing, better privacy, and no transmission
bandwidth constraint. Under these considerations, it is much
more difficult to employ those high computation-demanding
models on edge devices.

For these purposes, various works focus on optimizing
the deep neural networks by removing the redundancy.
LeCun et al. [7] propose compressing models by
pruning model weights, and in the past few years,
Simonyan and Zisserman et al. [2] achieve impressive
compression rates on VGGNet by pruning parameters with
small magnitudes [8]. With these compression methods,
we can efficiently reduce the parameters in fully-connected
layers or in the filters of convolutional layers [9]. However,
the pruning result on convolutional layers leads to sparse
weight matrix with the same model architecture. Therefore,
without alternative libraries or specific hardware accelerators
conducting sparse operations, the compressed network with
weight pruning cannot actually help reduce the computation
time on general processors, such as GPUs and DSPs.

Rather than weight pruning, filter removal (or filter pruning)
is another aspect of pruning which is beneficial for gen-
eral computing platforms. CNNs with large capacity usually
have redundancy among different filters. Therefore, recently
Li et al. [10] and Chen et al. [11] propose the methods
of optimizing the model architecture by removing the entire
convolution filter at a time according to the sparsity, which is
defined differently in these two works. Based on the definition
of filter sparsity [11], our previous work [12] defines the
reducing factor component and analyzes the sensitivity of a
network. By pruning the less sensitive part, we can obtain
lower performance drop with the same number of parameters
left.

Nonetheless, there are still no clear and systematic method-
ology for probing the sensitivity of a CNN network [12].
In this paper, inspired by rate-distortion optimization (RDO)
technique widely employed in video and image coding,
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we define the sensitivity of each convolutional layer and
propose a new computation-performance optimization (CPO)
algorithm to successively choose the proper layers to reduce
the computation by filter removal when given some perfor-
mance constraints. The layer with the lowest sensitivity will
be pruned first, and by monitoring the performance sensitivity
globally, we can derive the number of filters to remove for
each layer. Therefore, by pruning the model with filter removal
method and the CPO algorithm, we can find out the optimal
number of channels in each layer of a deep well-trained but
redundant CNN network. In order to prove the effectiveness
of the proposed method, a deep CNN model for image super
resolution (SR) and three models for image classification are
employed. Compared with the previous work [12], our method
achieves larger reduction of computation and parameters under
the same performance constraint. Furthermore, we also com-
pare the experimental results with the state-of-the-art filter
pruning method [10] to show that the proposed method can
reduce more parameters. Specifically, our contributions are:

1) Exploring the redundancy of convolutional layers with
their sensitivity and filter sparsity,

2) Proposing the Computation-Performance Optimization
(CPO) method for systematically reducing computation
operations under given performance drop constraint, and

3) Applying CPO on SR and image classification tasks,
which leads to significant improvement of computation
reduction.

II. RELATED WORKS

Several methods have been proposed in order to compress
networks. Pruning is shown to be effective in reducing the
network complexity and over-fitting. By eliminating weight
connections, it sometimes even leads to performance gain.
Early works such as Optimal Brain Damage (OBD) [7] and
Optimal Brain Surgeon (OBS) [13] compute the saliency of
each individual parameter through second order derivatives
and remove those with lower saliencies. However, with the
growing scale of modern network architectures, it becomes
unrealistic to compute the saliency of every parameter. There-
fore, Han et al. [8] remove weights whose magnitudes are
smaller than a certain threshold. In addition to pruning, they
incorporate weight sharing and Huffman coding to further
boost the compression rate while still being able to retain the
original performance at the same time.

Aside from pruning, fixed-point quantization is also one
common method towards compressing and accelerating net-
works. Hung et al. [14] show that sometimes the quantized
network can outperform the original full-precision network.
Recent research include XNOR-net [15], in which both inputs
and weights are binarized. They introduce a scaling factor,
which is the L1-norm of the original inputs and weights.
By multiplying binarized layers by the scaling factor, the accu-
racy drop is significantly decreased compared with other
binary networks. Incremental Network Quantization [16] par-
titions weights in a single layer into different groups and
incrementally quantizes the weights of the entire network to
powers of two and zeros, resulting in better accuracy than the
full-precision one. Besides finding the optimum quantization

step size, Anwar et al. [17] give the insight into layer-wise
sensitivity by conducting experiments on quantizing one layer
when keeping others in high precision.

Vector Quantization for quantizing the parameter values
has also been used in compression, Gong et al. [18] exploit
multiple methods like scalar and product quantization with
K-Means clustering for the weight parameters. A unified
Quantized Convolutional Neural Network (Q-CNN) frame-
work [19] is proposed. They not only quantize the parameters
in both convolutional layers and fully-connected layers, but
minimize the estimation error of each layer’s response. With
the error correction mechanism, only minor accuracy drop was
sustained.

From the perspective of filters within convolutional layers,
Jaderberg et al. [20] present an approximation of full rank
filter banks as a combination of rank-1 filter basis and reduces
the inference time. Group-wise Brain Damage [21] revisits
the concept of OBD and leverages the fact that convolutions
are in practice matrix multiplications. They group together
entries of the convolution filters and reduce them to zeros in
a coordinated way. Anwar et al. [22] introduce three levels
of structured sparsity, which are channel wise, filter wise
and intra filters strided sparsity when it comes to pruning
weights and filters. They also point out that other compressing
techniques (e.g. quantization) are orthogonal to pruning, and
will enable greater computation and storage savings.

Meanwhile, some works are dedicated to filter-wise
removal [10]–[12], they point out that removing redundant
filters to alter the network architecture can dramatically save
the computation. Among those network compression and opti-
mization techniques described above, filter removal is one of
the methods with high potential since it can be used not only
for model size compression but also for computation reduction
for general computing platforms. In the well-performed work
conducted by Li et al. [10], they use the L1-norm of every
filter to rank the removing order. In addition, the number of
filters to be removed in each layer is decided by observations
and empiricism. Different from their L1-norm calculation and
based on the sparsity definition in our previous work [12],
we provide a well-defined metric, performance sensitivity
(PS), to measure the layer’s sensitivity for filter pruning.
With the guide of PS and the constraint of a given expected
performance drop, we can layer-wisely remove sparse filters
and fine-tune the model to find the suitable number of filters
to remove for each layer. Finally, experiments on image
classification and image super resolution are conducted to
prove the effectiveness of the proposed method and our method
can be comparable or even better than the state-of-the-art [10].

III. PROPOSED METHOD

The operations of the i -th CNN layer involve convolving
a 3-D tensor (input, xi ∈ R

Ci×Yi ×Xi ) with Ni different
3-D tensors (filters, Fi,n ∈ R

Ci×Hi ×Wi ) to extract different
features and then generating a 3-D feature map tensor (output,
yi ∈ R

Ni ×Y ′
i ×X ′

i ), where Ci , Yi , Xi are channel, height and
width of the i -th input tensor, Hi, Wi are height and width
of one filter, and Ni is the number of convolution filters
in the i -th layers, which is equal to Ci+1, the number of
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Fig. 1. (a) Flow of conducting CPO system. (b) Intra-layer filter removal
process. Figure (a) illustrates the whole CPO pruning algorithm. Given an
expected drop by the user, the system will iteratively prune the well-trained
CNN model by determining the layer-wise reducing factors, and evaluate the
model performance to start the next iteration. Figure (b) demonstrates the
intra-layer filter removal process with a given reducing factor. We first rank
the filters in the i-th layer by sparsity and remove the first Ni ri filters. When
Ni = 10, ri = 0.3, after pruning, 7 filters will exist and the output feature
map will remain 7 channels, too.

channels of the next layer. Y ′
i , X ′

i are slightly different from
Yi , Xi owing to the boundary of convolution, and the output
tensor is also the input tensor of the next layer. The filter
pruning procedure is based on removing one complete filter
of the i -th layer at a time, which reduces Ci Hi Wi X ′

i Y
′
i

operations. And furthermore, it will also eliminate one feature
map channel at the next layer, so it will concurrently reduce
Ni+1 Hi+1Wi+1 Xi+1Yi+1 operations.

Given a well-pretrained CNN model with the common state-
of-the-art architecture, in the network optimization process
with filter removal, the number of filters and which filters to
be removed among each layer are two important parameters
we need to determine. Within one layer, we define the filter
sparsity and rank the possible candidates to be removed;
between layers, we propose a Computation-Performance Opti-
mization (CPO) algorithm to take sparsity and performance
sensitivity, which will be defined later, into consideration
to iteratively determine the sequence of layer-wise reducing
factors (the ratio of removed filters). Specifically, owing to
different tasks or applications, the users may have an expected
acceptable performance drop after model pruning. Therefore,
we can adaptively prune the CNN network according to
any expected drop. Fig. 1 (a) illustrates our CPO system.

Given a trained CNN network and an expected performance
drop by the user, the CPO system will iteratively determine
the reducing factor of every convolutional layer for the “Filter
Removal Process”. After pruning and retraining, we will do
“Performance Evaluation” and start the next CPO iteration to
generate the next reducing factor. In the following subsections,
we will introduce the proposed method from the intra-layer to
the inter-layer parts.

A. Definition of Sparsity

The criterion of redundancy is defined layer-by-layer
according to their weight distribution. For a specified layer i ,
we use Mi to represent the mean value of all absolute filter
weights:

Mi =
∑

n,c,h,w

∣
∣Fi,n,c,h,w

∣
∣

Ni × Ci × Wi × Hi
, (1)

where n, c, h, w are the indices of the filter tensor F . Then
the Sparsity Si (n) of the n-th filter at layer i can be written
as:

Si (n) =
∑

c,h,w σ (Fi,n,c,h,w)

Ci × Wi × Hi
,

σ (x) =
{

1, if |x | < Mi

0, otherwise
(2)

In other words, for a specific layer i , if a filter has several
coefficients which are less than the mean value, Si (n) is close
to 1, which means this filter is more redundant than others.
We then rank the filters in the i -th layer in descending order
according to their sparsity values. When we conduct CPO
at the i -th layer afterwards, the filters ranked higher will be
removed first.

B. Definition of Reducing Factor

Considering that the numbers of convolution filters vary
from layer to layer, it is not convenient for us to compute
the exact number of redundant filters when conducting CPO
algorithm. We thus define the reducing factor ri , 0 ≤ ri ≤ 1
for the i -th layer. The value of ri is the ratio of the numbers
of removed filters to all filters at the layer i . Fig. 1 (b)
demonstrates an example of intra-layer filter removal process.
For the i -th layer, there are Ni = 10 filters, and originally the
output feature map will contain 10 channels. We first calculate
the filter sparsity Si (n), and construct the ranked sparsity list.
If we set ri = 0.3, Ni ri = 3 filters on the top of the ranked
list will be removed and 3 channels of the output feature map
will be removed as well.

C. Concept of Computation-Performance Optimization

The next step is to determine the reducing factors while
considering the global effects of filter removal across layers.
Inspired by the rate-distortion optimization (RDO) technique
in video and image coding [23], [24], we propose the concept
of computation-performance optimization (CPO) for CNN
optimization. In video and image coding systems, RDO is the
method to determine the optimal bit allocation to achieve the
minimized distortion δ∗ under a given bit-rate constraint Rc:

δ > δ∗ ∀ R < Rc (3)
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To solve this problem, in [24], a post-compression rate-
distortion optimization (PCRDO) is proposed for image cod-
ing. An image is decomposed into several small coding
unit CUi , and �δi/�Ri is calculated, where �δi is the global
distortion reduction when coding unit CUi in included, and
�Ri is the required bitrate for this coding unit. Given any λ,
the set of coding units

{CUi |�δi/�Ri > λ} (4)

is an RDO solution under the total bit-rate

Rc =
∑

{Ri |�δi/�Ri > λ}. (5)

Inspired by PCRDO, we model the filter removal process
as a computation-performance optimization (CPO) problem,
that is, we would like to achieve the minimized performance
drop D∗ under a given computation budget ζc. A group of
filters is then employed as the small unit, and the associated
�D/�ζ is derived for selecting the filter to be removed. Sim-
ilarly, the units with larger �D/�ζ are kept, that is, the units
with smaller �D/�ζ are removed to achieve computation-
performance optimization. Note that �D/�ζ can be viewed
as a kind of performance sensitivity.

D. Definition of Performance Sensitivity

For one specific convolutional layer, we can deduce the
potential redundancy of filters by calculating the filter sparsity
with (2), and consequently we can first remove the filters with
high sparsity. However, for the entire CNN model, we have
no clear criterion for determining which layer we can conduct
filter pruning first. Based on the concept of CPO, we define
the Performance Sensitivity (PS) of the i -th convolutional
layer with the change of reducing factor (ri ) and performance
drop (D):

PSi (�ri ,�D) = �D

�ζ
= �D

�ri × Wi × Hi × Ci
, (6)

where D is the performance drop, which is a positive value,
and �D is the change of drop between two pruning steps.
�ri is the change of reducing factor, and the whole denom-
inator part approximates the computation change �ζ for
removing a portion of filters in the i -th layer.

The Performance Sensitivity (PS) represents the aptness of
being pruned for a layer. When conducting our Computation-
Performance Optimization (CPO) with reducing factor, it is
more likely to assign higher reducing factors to the layers
with lower PS values.

E. Computation-Performance Optimization

The problem left now is to determine the exact number of
filters allowed to be removed for each single layer without
apparent performance drop. Based on the concept of CPO,
the Performance Sensitivity (PS) is employed to balance the
trade-off between “Computation Reduction” and “Performance
Drop”.

First, we need to find out the PS value of each layer.
By emulating the method in finding layer-wise sensitivity [17],

we iteratively set r = 0.5 to halve the number of fil-
ters in one layer and meanwhile keep the rest untouched.
With those remained parameters, we retrain the model for
few epochs to fine-tune the model until convergence. After
obtaining the performance drop Di , PSi can be calculated
with �ri = 0.5 − 0 = 0.5 and �Di = Di − 0 = Di

in (6), where the initial reducing factor and the initial drop
are both zero. Finally, with this pruning test for each layer
respectively, we can construct the sensitivity list for the
subsequent steps. The reason why we choose half over other
fractions to probe the sensitivity is two-fold. For one, if a too
small portion of filters is pruned away, the performance will
be quickly restored through the retraining process, resulting
in unstable PS values. For the other, it inherently fits the
property of Binary Search (BS) to find out the appropriate
reducing factor for the consecutive procedures in the proposed
CPO algorithm.

Second, with the PS list obtained by setting ri = 0.5 for
each layer i respectively, we sort it in ascending order and
start removing filters from the least sensitive layer, which is
called “the current layer" in following descriptions. Following
the Binary Search order, we increase the reducing factor from
ri = 0.5 to 0.75, 0.875... for the current layer, unless one of
the following conditions is met:

1) When the performance drop becomes intolerable.
2) When the updated PS value of the current layer becomes

larger than that of the runner-up.
3) When the layer run out of filters to remove.
The performance drop is intolerable when it exceeds the

expected drop Dexp , which is decided by the user of our
CPO system. When it happens, we will take a step back
by following the binary search order. That is to say, instead
of removing Ni ri,k filters which causes unexpected drop for
the k-th step, we remove Ni

(ri,k +ri,k−1 )
2 filters. If it is still

intolerable, we will search the suitable reducing factor for the
current layer until the drop becomes smaller than Dexp . Next,
we move on to removing the filters at the next least sensitive
layer.

The second condition appears during the sensitivity updating
within the current layer. The goal of updating the PS value is
to evaluate the performance change owing to the computation
reduction, or we can say the incrementally increased reducing
factor. That is, for example, if ri,k = 0.75 and ri,k−1 = 0.5
in the k-th and (k − 1)-th steps, respectively, �ri is set
as 0.75 − 0.5 = 0.25 in (6). Note that PS will become
higher and higher when we continue removing filters from
one single layer, which is a kind of diminishing marginal
utility. Therefore, when we detect that the PS value of the
current layer has grown larger than the runner-up layer i ′ in
the sensitivity list, it strongly suggests that this reducing factor
influences the whole performance too much, and we will then
switch to the next layer i ′.

In addition, once we decide the number of filters to remove
in the i -th layer, the PS value of the (i + 1)-th layer in the
original sensitivity list is also updated because of channel
reduction. As mentioned in Sec. III-B, if we remove ni filters
in the current layer i , every filter in the (i + 1)-th layer will
also be reduced by ni channels, which causes the reduction
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of computation at that layer. Therefore, we need to modify
the denominator term Ci+1 of (6), and it will simultaneously
increase the PSi+1 value.

The procedure described above will iterate through all of the
layers that are available for filter pruning. For the experiments
in SR, we will not prune the last convolutional layer because
the number of filters at that layer is only one. Meanwhile for
the experiments in image classification, the available layers
for filter pruning in our CPO algorithm differ from model
to model. It depends on the original architecture (VGGnet,
Resnet [3] and so on) or whether the hidden layers exist
between the last convolutional layer and the output layer.
If there is only one linear layer which maps the feature map of
the last convolutional layer to the class prediction, we will not
remove the filters in the last convolutional layer because it will
correspondingly remove some of the parameters in the next
linear layer and meanwhile greatly influence the prediction
performance. We will discuss the details in Sec. IV. The
overall algorithm flow is shown as follows.

Alogorithm Flow of CPO
1: Given a trained CNN model.
2: Determine an expected performance drop Dexp .
3: Start probing the Performance Sensitivity :
4: repeat through every convolutional layer
5:

Prune the i -th layer with ri = 0.5 and obtain
the corresponding drop (Di ) after retraining few
epochs.

6: Calculate the Performance Sensitivity (PSi )
according to (6) and add it to PS list.

7: Recover the i -th layer by setting ri = 0
8: until all available layers are iterated through.
9: Start determining the actual ri for every layer:

10: repeat through the ranked PS list
11: Start pruning the i -th layer :
12: loop with the BS order for ri,k starting from 0.5
13: Prune the layer with ri,k for the k-th

iteration and retrain the model for few
epochs.

14: Update the PS value and check the ter-
mination conditions.

15: if it meets the conditions 1) or 2). then
16: repeat step back to ri = (ri,k +ri,k−1 )

2
17: until the drop is acceptable.
18: break
19: else if it meets conditions 3). then break
20: else
21: Go to next iteration with larger reducing factor.
22: end if
23: end loop
24: Update the PS list owing to channel reduction.
25: until All layers in PS list are iterated through

F. FLOP and Parameters Calculation

After conducting CPO, we can significantly remove a large
number of parameters, which will result in smaller storage
size and less floating point operation (FLOP). To quantify the

operations remained in all convolutional layers, we follow the
equations:

F L O P =
∑

i

Ni × (Wi × Hi × Ci ) × (Xi × Yi ), (7)

where Wi , Hi , and Ci are the width, height, and number of
channels of Ni filters in the i -th layer respectively, while Xi

and Yi are the width and height of the convolved input.
To calculate the parameters in the meantime, we just remove

the (Xi × Yi ) terms of the shifting window operations of
convolution in (7), and thus we can obtain the parameter size
inside all convolutional layers.

IV. EXPERIMENTAL RESULTS

We conduct experiments on two tasks to demonstrate our
CPO algorithm, which are image super-resolution and image
classification. For image super-resolution, we employ the
residual CNN model in Very Deep Super Resolution [6]
(VDSR). This model is constructed only with convolutional
layers; therefore, the model size and the computation
time will not be influenced by the fully-connected lay-
ers. As for image classification, we construct a modified
VGG-19 model [2], a self-designed Resnet-32 model and a
self-designed Mobilenet-22 model, which are modified from
Resnet-34 [3] and Mobilenet-v1 [25], respectively. These three
networks are dedicated models for training and testing on
Cifar-10 dataset [26]. Cifar-10 is a small dataset including
10 categories, and all of which are composed of 3-channel
RGB images with the resolution of 32 × 32. The following
experiments will be conducted on the four models.

a) Performance and Computation Comparison With
Baseline Method: For the tasks mentioned above, we first
construct a baseline method as what was done in our previous
work [12], called Uniform Removal (UR). UR will remove
filters with a fixed reducing factor ri across all available
layers. After that, we retrain for few epochs to recover the
performance. The number of retraining epochs may be slightly
larger than that in [12] because we find that the performance
drop will be stable if we make the retraining stage converge.
To prove the effectiveness of our method, we perform CPO
on the original model and set the expected drop Dexp as
the validation drop obtained from UR. We then compare
the remaining parameters and FLOP between CPO and UR.
We also conduct some experiments with Dexp set as other
values to observe the trade-off between performance and
computation. The expected drop and the drop monitored in
CPO algorithm are all tested with the validation set, which
is seen but not trained during the procedure. After our CPO
algorithm, we will test the model with a totally unseen testing
set to evaluate our model performance. It is worth noticing
that once one filter is removed, the number of channels in
every filter of the next layer will consequently decrease by
one. This is the reason why the actual parameters removed
will be more than the percentage of filters we attempt to
remove in UR. In addition, we conduct CPO experiments from
lower Dexp to higher one, and we will use the model pruned by
lower Dexp as the base model to continue the next experiment
of higher Dexp .
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TABLE I

SCALE-SIM HARDWARE CONFIGURATION. THIS TABLE SHOWS THE
CONFIGURATIONS OF OUR SYSTOLIC ARRAY SIMULATOR. IFMAP

AND OFMAP MEANS INPUT AND OUTPUT FEATURE MAP

b) Hardware Simulation: Our proposed method is try-
ing to reduce the entire convolutional filters that have less
contribution to the network. Therefore, it genuinely reduces
not only the parameters but also the FLOP when performing
on any hardware platform. We simulate the operations on the
Systolic CNN AcceLErator Simulator (SCALE-sim) proposed
by ARM [27] to prove the reduction of computation. Table I
shows the simulation configurations of the systolic CNN
array. This tool can help generate the computation cycles and
the DRAM read/write bandwidth. In the following sections,
we will only show the total cycle count of network inference
stage for simplicity.

c) Shallow and Deep Model Comparison: Aside from
comparing the results between UR and CPO, we also design a
shallow model with comparable parameters to the deep model
pruned by our CPO system. The results will show the trade-off
between training time and the performance of the model.

A. Fully Convolutional VDSR Network

We obtain the well-trained VDSR model from the offi-
cial website [28]. Because we have no knowledge of which
validation set the model was originally validated on, we
choose Set5 [29] as our validation set and Set14 [30] as the
final testing set, both with ×2 scale. These two datasets are
commonly used in image super-resolution tasks.

The model structure is a 20-layer residual CNN as illus-
trated in Fig. 2. The input is an interpolated low-resolution
(ILR) image with one channel (Y channel), and the output
is the derived high-resolution (HR) one. During training and
validation, for convenience, we will use input images with
sizes of 41 × 41 that are randomly cropped from the dataset,
which is same as the settings in VDSR. When performing
testing phase, the input and output sizes can be arbitrary
depending on the testing image. Among the convolutional
layers, each of the first 19 layers has 64 filters, but only one
filter exists in the last layer to generate the residual part, which
is added by the low resolution image to finally generate the
high-resolution one. Since the last layer of VDSR has only
one filter, we perform filter-pruning on the rest of the layers.
There are two main reasons for conducting our experiments
on VDSR. First, the fully-convolutional model can help us
clearly evaluate the performance of our filter removal method.
Second, since the task of SR is difficult in computer vision,
we are interested in finding the redundancy of an SR model.

Table II shows the experimental results of pruning VDSR
network. We use PSNR (dB) to evaluate the performance.

TABLE II

EXPERIMENTAL RESULTS OF VDSR. THIS TABLE SHOWS THE SETTINGS
AND PERFORMANCE RESULTS OF THE ORIGINAL MODEL, THE

MODELS PRUNED AFTER UR AND OUR PROPOSED CPO. THE

NUMBER OF RETRAINING EPOCHS AFTER PRUNING IS 5.
SET14 IS OUR UNSEEN TESTING SET AND THE LAST

COLUMN IS THE CYCLE COUNT AFTER OUR

SCALE-SIM CNN HARDWARE SIMULATOR

Fig. 2. Network structure of VDSR. The 20-layer residual network is
composed of 20 times convolutions and nonlinear operations. There is no
pooling layer, so the output of the residual part has the same size as the input.
ILR means Interpolated Low-Resolution and HR represents High-Resolution.

The first four columns are the model settings and performance
results. The last column is the summed computation latency
calculated in cycle count after performing the network infer-
ence on one input image, which has the size of 41×41 in this
case, with the SCALE-sim neural network simulator. In all
tables, “Val” means validation and “Params” represents para-
meters. First, the upper part is the performance of the original
trained model, which achieves 40.26d B on the validation set
and 33.08d B on the Set14 testing set. The baseline UR results
are in the middle. Owing to the unchanged size of the feature
maps among the VDSR network, the percentage of parameters
and FLOP remained, which are calculated by (7), are the
same. Note that the PSNR drop of the results are slightly
different from those in [12] because we conduct 5 retraining
epochs instead of 3 as mentioned above. We show three
results with different reducing factors. When we increase the
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reducing factor, the remaining parameters decrease but the
performance will also drop accordingly. At the bottom part
of Table II, it shows the results with our proposed CPO. The
first column is the user expected drop (Dexp), and the second
column is the final validation drop after the last pruning and
retraining iteration. Note that the three settings whose expected
drops are marked with (∗) correspond to the three baseline
UR methods. It can be seen that CPO can achieve results
superior to UR for every reducing factor. With comparable
PSNR drop on unseen testing set, CPO is able to achieve
more computation reduction. It can save about 50% of para-
meter storage and computation with minor performance drop
(Val:0.26dB/Test:0.28dB). In addition, it also shows that about
30% of the computations are redundant given only a negligible
drop (Val:0.05dB/Test:0.12dB). For a model purely containing
convolutional layers, our method will surely alleviate the
computational burden on the hardware. Furthermore, we also
conduct two other expected drop settings to observe the trend
between performance drop and computation reduction. We find
that we only get marginally additional computation reduction
when we have already removed the majority of redundancy
in the model. The reason we speculate is that the difficult
SR task is a regression task rather than a classification task,
so there might be not so much redundancy in the VDSR model.
However, we can still eliminate 15% more of the parameters
than UR method did when there is a negligible drop.

Designing a shallow model can also reduce the computation
cost. However, a non-deep network may sometimes fail to
perform well. Table III shows our experimental results. The
shallow VDSR model is composed of 10 convolutional layers,
and the remained parameters are comparable to the model
pruned after CPO with the settings of Dexp = 0.32. We can
see that our method can perform well on the validation and
testing sets. We use the number of training epochs to evaluate
the training time. Although our method can perform better,
the trade-off is that it may take more time to retrain the model
with conducting CPO than simply train the shallow model
from scratch. In addition, the retraining time is also higher than
that in UR (5 epochs) which is mentioned in Sec. IV. we think
that increased retraining time is not the main consideration.
The purpose of our algorithm is to reduce the burden when we
deploy the model on some hardware devices at last. Therefore,
we can use a powerful GPU first to eliminate the redundancy
as much as possible by reasonable offline training, and then
deploy the model on those hardware devices.

B. VGG-19 on Cifar-10 Image Classification

The following three sections are the experiments on
Cifar-10 image classification task with three dedicated neural
network models. The purpose of all our experiments is to
observe the impact of removing filters in convolutional layers.
Hence, there are no hidden fully-connected (FC) layers in our
self-designed models. We only use one linear layer to map the
flattened feature map after the last pooling layer to the classes
prediction.

The first self-designed model is a modified VGG-19 net-
work, which contains 16 convolutional layers and one linear
layer. Furthermore, we preserve all the filters in the last

TABLE III

COMPARISON OF SHALLOW MODEL AND PRUNED DEEP MODEL
(VDSR). THIS TABLE SHOWS THE TRADE-OFF BETWEEN TRAINING

A SHALLOW MODEL AND PRUNING A GIVEN WELL-TRAINED

DEEP MODEL. WE CHOOSE THE CPO RESULTS WITH

Dexp = 0.32 TO DO THE COMPARISON. IT SHOWS THAT
WE CAN GET BETTER PERFORMANCE WITH CPO

BUT IT TAKES MORE RETRAINING TIME

BECAUSE OF THE ITERATIVE PRUNING

TABLE IV

ARCHITECTURE OF OUR MODIFIED VGG-19 NETWORK. THERE ARE

FIVE PARTS AND 16 CONVOLUTIONAL LAYERS IN OUR MODEL.
THE NUMBER OF FILTERS FOR EACH CONVOLUTION ARE SHOWN

INSIDE THE PARENTHESES AT THE FIRST ROW. NOTE THAT

THERE IS ONLY ONE LINEAR LAYER INSTEAD OF THREE

TO MAP THE FEATURE VECTOR TO THE
OUTPUT PREDICTION

convolutional layer in order not to accordingly influence the
last output layer, which contains less parameters but plays a
role in the feature-to-class transformation. In summary, filter-
pruning will only be performed on the first 15 layers in our
modified VGG-19 network to gain undistracted insight into
how the removal of filters in convolutional layers affects the
performance. Table IV briefly illustrates the modified VGG-19
network. There are five convolution parts, and the settings in
each part such as the number and sizes of convolution filters
are all the same as the original network. The final output layer
which contains 512×10 parameters will map the feature vector
to the 10 classes output. Moreover, we implemented Batch-
Normalization (BN) [31] after every convolution layer, which
are not shown in the table. BN layers store additional statistical
information of the preceding feature maps and also contain the
parameters of linear shifting operation; therefore, the removal
of filters will result in corresponding reduction of the variables
in BN layers, too.

The experimental results of VGG-19 on Cifar-10 are shown
in Table V. We randomly choose ten percent of the training
data as our validation set. Then, we train the unpruned
VGG-19 network by ourselves. It achieves 93.16% validation
accuracy and 92.98% testing accuracy. Based on the model,
we conduct both UR and our CPO algorithm. Same as the
notation in Table. II, we use (∗) to represent the value of Dexp

which is set as the “Val Drop" evaluated after performing UR.
It can be seen in Table V that the remaining parameters

of the new architecture derived from our CPO algorithm are
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TABLE V

EXPERIMENTAL RESULTS OF VGG-19. THIS TABLE SHOWS THE
RESULTS OF UNPRUNED AND PRUNED VGG-19 MODELS TESTED

ON CIFAR-10. THE NUMBER OF RETRAINING EPOCHS AFTER

EVERY PRUNING ITERATION IS 8. THE LAST COLUMN IS

THE CYCLE COUNT AFTER OUR SCALE-SIM
CNN HARDWARE SIMULATOR

Fig. 3. VGG-19 performance sensitivity list.

radically less than that of UR. Notice that the reduction in
FLOP of the models derived by CPO are not as much as the
reduction in parameters. The explanation is that owing to the
low PS values of the last few layers in VGG-19, as Fig 3
shows, we prefer to remove the filters at those layers. However,
the Xi , Yi of those feature maps are small because we’ve gone
through many pooling layers. Therefore, the overall reduction
in FLOP will not be as much as that in parameters. Next, for
the testing drop in the CPO part, the original performance after
retraining for 8 epochs in the final iteration is a little less than
the results of UR. Our conjecture is that the models suffer
much more parameter reduction after CPO than after UR;
therefore, we need more retraining epochs for the last iteration
in CPO to recover the performance. Hence, the number in
the parentheses on the right side is the drop after retraining
for 40 epochs. It shows that the model can recover to the
comparable performance as expected. We also conduct two

TABLE VI

COMPARISON OF SHALLOW MODEL AND PRUNED DEEP MODEL
(VGG-19). THIS TABLE ALSO SHOWS THE TRADE-OFF BETWEEN

SHALLOW AND PRUNED DEEP MODEL. WE CHOOSE ONE CPO
RESULTS WITH COMPARABLE PERFORMANCE TO

COMPARE THE COMPUTATION REMAINED

CPO experiments to observe the redundancy when given
negligible drops. We find that almost 70% parameters can be
removed in the redundant VGG-19 network.

Tabel VI also shows the performance of training a shallow
model. The model is constructed with 5 convolutional layers,
where each layer contains 64, 128, 256, 512 and 512 filters.
Cifar-10 is less complicated in comparison with other large
image classification dataset, for which VGG-19 is originally
designed. Therefore, the shallow model with only 5 convolu-
tional layers can even achieve 89.56% testing accuracy. This
time we choose the CPO results with comparable performance
(90.26%) to compare the remaining computation. We can
claim that our CPO is able to detect a great amount of
redundancy in VGG-19 and remove almost 97% of parameters.
However, same as the VDSR experiment stated above, we need
to spend more training time to achieve this performance.
In details, we use one Geforce 1080Ti GPU to train the Cifar-
10 dataset, and it only takes less than fifteen seconds to train
for an epoch. Therefore, in practice, our CPO method takes
reasonable training time for some small dataset.

C. Resnet-32 on Cifar-10 Image Classification

It has been a well-known fact that VGG-19 contains great
amount of redundancy. Therefore, it can be easily pruned
without apparent performance drop. To prove the effectiveness
of our CPO, we modify the original architecture of Resnet-
34 [3] and design a dedicated Resnet-32 to train on Cifar-10.
Resnet [3] is recently one of the most powerful networks, and
meanwhile it contains less parameters than the VGG network.
Our Resnet-32 possesses 31 convolutional layers and 1 FC
layer to map to 10 classes. Among the convolutional layers,
except for the first layer, every 2 layers constitute a residual
block. There are three stages presented in the model, and each
contains 10 convolutional layers. The sizes of output feature
maps at the end of each stages are 32×32, 16×16, and 8×8.
We utilize 1×1 convolutions to deal with the conflict when
the input and output of a residual shortcut have different
channel dimensions, which is also the design adopted by
the original Resnet model. In details, our Resnet-32 only
contains approximately 9% parameters compared to the above
VGG-19 network.

It is worth noticing that not every convolutional layer is free
to be pruned. On one hand, for a residual block with input and
output of identical dimensions, the shortcut is an identity map-
ping. Hence we do not prune the second layer of the residual
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Fig. 4. (a) Shortcut convolution Pruning. (b) Shortcut Identity Padding.
For the residual block with convolution shortcut (a), we first remove the filters
in the shortcut and then remove the corresponding filters. For the identity
mapping after the shortcut convolution (b), we will do zero-padding to make
the dimension of feature maps consistent.

block with an eye to maintaining the number of channels of
the output feature map, which will be added with the identity
mapping. On the other hand, same as the method proposed
in [10], when a residual block has input and output of different
dimensions, we remove filters in the 1×1 shortcut convolution
with a given reducing factor, and then remove the filters in
the second layer of the residual block according to the indices
removed in the shortcut convolution. Fig. 4 (a) demonstrates
this pruning process, our system will first determine the filter
be removed in the shortcut convolution, like the second and
third filters, and subsequently remove the corresponding filters
in the second convolution layer to avoid dimension conflict.
Additionally, when filters are removed in a residual block with
convolution shortcut, the identity mapping of the next residual
block will cause a conflict. Fig. 4 (b) shows the situation. The
channel of the input feature map is reduced owing to the filter
removal of the preceding layer. Because we will not prune
the second convolution layer as mentioned above, there will
be a conflict on the identity mapping. Therefore, we will zero-
pad the feature map to match the dimension when performing
identity addition. Considering the situations about dimension
consistency above, the first layer and the FC layer are intact as
well. Therefore, there is a limitation on the maximum portion
of parameters that can be pruned.

TABLE VII

EXPERIMENTAL RESULTS OF RESNET-32. THIS TABLE SHOWS THE
RESULTS OF UNPRUNED AND PRUNED RESNET-32 MODEL TESTED

ON CIFAR-10. THE NUMBER OF RETRAINING EPOCHS AFTER

EVERY PRUNING ITERATION IS 8. THE LAST COLUMN IS THE

CYCLE COUNT AFTER OUR SCALE-SIM
CNN HARDWARE SIMULATOR

The experimental results can be found in Table. VII. All the
settings are the same as VGG-19, except that the testing drop
in the parentheses are the drop retraining for 100 epochs after
the final CPO iteration. We speculate that Resnet-32 model
involves more complicated operations (shortcut convolution
and zero-padding); therefore, it needs more epochs to recover
the performance. Still, we can see that all the computation
reduction done by CPO performs better than that by UR,
except one point where the remaining parameters are less
than UR but FLOP is a little bit more. This is also caused
by removing most of the parameters at the last convolution
stage. In summary, given a well-performed Resnet model
(Test Acc:94.58%) with less parameters, although we cannot
remove as much parameters as we did for VGG-19 network,
we still can eliminate 30% of parameters with negligible drop
(0.30%) and remove almost 80% of weights with an accuracy
that is still higher than 90%.

The comparisons of the performance with shallow networks
in Sec. IV-A, IV-B show that a deep but “thin” network,
which means the number of filters in each layer is less than
those in the original model, perform better than a shallow
network with comparable parameters. We now conduct another
experiment on Resnet-32 to discuss the importance of first
conducting CPO on the original deep but “fat” model and
then fine-tune on it. Without CPO, one can exhaustively try
different light-weight architectures, randomly initialize the
weight and train the model from scratch to meet the expected
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TABLE VIII

COMPARISON OF FINE-TUNING AND RANDOM INITIALIZATION OF
PRUNED RESNET-32 ON CIFAR-10. THIS TABLE SHOWS THAT FINE-

TUNING THE MODEL AFTER CPO CAN PERFORM BETTER AND

MORE EFFECTIVE THAN TRAINING THE MODEL FROM

SCRATCH OF THE SAME MODEL ARCHITECTURE
WITH RANDOM WEIGHT INITIALIZATION

performance metrics. However, it is not efficient for optimiza-
tion and the performance may not be as expected. Table. VIII
shows the results. The first row is the performance of our
CPO with Dexp = 1.44. As the experiments conducted above,
the pruned architecture found by CPO will be fine-tuned for
extra 100 epochs to recover the performance. 93.76% and
93.11% are the validation and testing accuracy after fine-
tuning. The next two rows are the experiments performed on
the same architecture of that in CPO (1.44) but with random
initialization on the weights. It shows that if we train from
scratch with the same number of epochs, the performance is
still far from the result after CPO. Not until the 260-th epochs
does it reach the comparable performance to ours. Therefore,
initializing the model with the original weights helps us speed
up the training process and at the same time retain excellent
performance.

D. Mobilenet-22 on Cifar10 Image Classification

Last year, a new architecture called Mobilenet [25] has
been proposed. Mobilenet is distinguished for its ability to
cut down on the number of parameters in convolutional layers
in comparison with conventional networks. By substituting
standard convolutions with depth-wise separable convolutions,
which can be done with depth-wise filters following point-
wise filters (1×1 convolution), the number of parameters
are dramatically reduced. To further inspect the efficacy of
our proposed method performing on those special convolu-
tion operations, we also apply it to a Mobilenet that we
designed for Cifar-10 called Mobilenet-22. Our Mobilenet-22
has 21 convolutional layers and 1 FC layer. Except for the
first layer in the convolutional layers, every 2 layers com-
pose a depth-wise separable filter. Mobilenet-22 is a light-
weight model with approximately 7% of parameters compared
with VGG-19. We will try to explain the pruning mechanism
in the following discussion. The filters that perform point-wise
convolutions are the major targets of our pruning process.
However, the removal of these filters will result in channel
reduction in the output feature map and induce additional
parameter reductions of the next layer in two ways. For one,
the following depth-wise filters with corresponding indices
will be removed. For the other, because of a shallower input
feature map at the next layer, the following point-wise filters
will become shallow, too. We show the experimental results
in Table. IX. There are no hardware simulation latency for

TABLE IX

EXPERIMENTAL RESULTS OF MOBILENET-22. THIS TABLE SHOWS THE
RESULTS OF UNPRUNED AND PRUNED MOBILENET-22 MODEL TESTED

ON CIFAR-10. THE NUMBER OF RETRAINING EPOCHS AFTER

EVERY PRUNING ITERATION IS 8. THE NEGATIVE SIGN IN

THE TESTING DROP COLUMN MEANS THE
RISE OF THE PERFORMANCE

the Mobilenet-22 because the SCALE-sim simulator does not
support special depth-wise convolution. Therefore, we only
use FLOP to represent the computation complexity. Because
our Mobilenet-22 is a light-weight model without residual
connections, the unpruned well-trained model cannot perform
as well as Resnet-32, and it only achieves 90.78% testing
accuracy. We can see that in order not to perform worse
than 90% testing accuracy, we can only remove about 60%
parameters with the UR baseline method. By conducting the
proposed CPO, we can surprisingly reduce 88% parameters
and 70% operations. Note that the negative sign in the testing
drop means that the performance even becomes better than
the original one, and the drop in parentheses represents the
performance with 40 additional training epochs after the final
CPO iteration. We find that we can approximately reduce half
of the FLOP in our Mobilenet-22 network and the performance
(Dexp = 0.2) is still maintained.

After conducting experiments on the three self-designed
networks for Cifar-10 image classification, we can claim
that no matter what kind of architectures, such as residual
connection or 1×1 point-wise convolution, our CPO can alter
the structure effectively according to the complexity of the task
and the expected acceptable performance drop Dexp given by
the user. In addition, unlike some works resulting in sparse
weight matrix, our CPO can truly alleviate the computation
burden on the CNN accelerator.

For image classification, we use Cifar-10 dataset to quickly
demonstrate the efficacy of our proposed CPO method. The
next section we will compare with the state-of-the-art filter
pruning method [10] with two standard models proposed in
their experiments, which are a VGG-16 model that is also
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TABLE X

VGG-16 COMPARISON BETWEEN CPO (Dexp = 0.1) AND [10]. BOTH
EXPERIMENTS USE VGG-16 TRAINED ON CIFAR-10 AS THE

TARGETED MODEL AND RETRAIN 40 EPOCHS AFTERWARDS.
CPO ACHIEVES MORE REDUCTION IN PARAMETERS AND

FLOP AND MEANWHILE MAINTAINS THE PERFORMANCE

trained on Cifar-10 dataset and a Resnet-34 model trained on
Imagenet dataset.

E. Comparison With the State-of-the-Art

Recently, the outstanding work [10] utilized similar concept
of filter-pruning and achieved impressive compression rate.
They determine which filters to be pruned within a single layer
Li by calculating the L1-norm of each filter Fi, j in that layer,
i.e. the L1-norm of filter j in i -th layer is s j = ∑ |Fi, j |.
And they remove those with smaller s j first. In addition, they
decide the number of filters to be pruned for each layer based
on observations and empiricism. They independently prune
each layer by different numbers of filters and respectively
inspect their performance on the validation set. According to
the layer’s resilience to filter pruning, they empirically assign
the suitable number of filters to be pruned for each stage of
convolutional layers, where the convolutional layers in the
same stage have the same size of feature maps. Therefore,
layers in the same stage will have the same number of filters
left afterwards.

We choose two networks which are commonly used and also
in their experiments, VGG-16 and Resnet-34, to demonstrate
our CPO method and show the performance and computation
comparisons. Their VGG-16 for Cifar-10 dataset possesses
13 convolutional layers and 2 FC layers, which are composed
of a hidden layer and an output layer. When performing
CPO on this model, there are two slight differences between
the settings of our modified VGG-19 network discussed in
Section IV-B and theirs. First, the last convolutional layer
of VGG-16 is available for filter pruning because the next
layer is not the output layer. The other one is that the first
FC layer will participate in the retraining stage because of the
corresponding reduction of parameters by removing filters at
the last convolutional layer.

Table X shows the performance of the original and pruned
models. The upper part is the results in [10], and the lower
part is ours. In order to have the same representation in their
experiment, we use “Error” to represent miss classification
rate (MCR). Note that their unpruned VGG-16 model [10]
is unreleased, so we train a model from scratch with exactly
identical architecture, which results in a slight difference of
the performance error. In addition, there is no expected per-
formance drop (Dexp) in their method; therefore, we perform
our CPO method with Dexp set as 0.1%. The result shows

TABLE XI

MODEL STRUCTURE OF VGG-16 DERIVED FROM CPO (Dexp = 0.1).
THE UNPRUNED VGG-16 MODEL STRUCTURE AND THE PRUNED

ONE ARE LISTED ALONG. THE LAST FEW LAYERS ARE MORE

INCLINED TO BE PRUNED BECAUSE OF LOW PS VALUES

Fig. 5. VGG-16 performance sensitivity list.

that CPO achieves more reduction in parameters and FLOP.
Moreover, the error performance of the CPO-pruned model
(6.66%) is also comparable to theirs (6.60%). In Table XI,
we present the final architecture of VGG-16 derived from
CPO. We list the original structure on the left side and the
required FLOP for reference. On the right side are the new
architecture and the FLOP pruned of every layer by our
proposed CPO. It can be seen that the last few layers are more
inclined to be removed, which is consistent with the previous
VGG-19 experiments and the VGG-16 PS list shown in Fig 5.

Next, the Resnet-34 network trained on famous Imagenet
dataset is the other pruned target. Imagenet contains one
million training images with one thousand label classes.
Therefore, it is considered to be hard to discover the redun-
dancy within the model that is trained on this large dataset.
We perform our proposed CPO with the pruning method
elaborated in Sec IV-C. Because of the great amount of
training time required for one training epoch, we only conduct
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TABLE XII

RESNET-34 COMPARISON BETWEEN CPO (Dexp = 1.3%) AND [10].
BOTH EXPERIMENTS USE RESNET-34 AS THE TARGETED MODEL.

CPO ACHIEVES MORE REDUCTION IN PARAMETERS AND

FLOP AND MEANWHILE MAINTAINS THE PERFORMANCE

three epochs for every retraining stage and for every epoch
we only randomly sample 1/3 images for training. Table XII
shows the experimental results of the two pruning methods.
Notice that the performance of the two unpruned models may
not be identical because of the different released sources, and
our pretrained Resnet-34 model is obtained from Pytorch [32].
Obviously, the computation reduction of the two methods are
not as much as that in VGG-16. By performing our CPO
with Dexp = 1.3%, we can discover 14.4% of redundancy for
parameters and obtain less than 1% drop of the performance,
which is better than the other. Nonetheless, when it comes
to FLOP, our method only removes 15% redundancy. The
reason is same that it tends to eliminate the filters at the last
few layers because removing the filters in those layers harm the
performance less. Compared with [10], they empirically decide
the number of filters to be removed in every convolutional
stage according to the layer sensitivity. Therefore, by removing
the filters in the first few layers, the FLOP can be pruned
more (75.8% remained) but at the same time, the classification
performance cannot be controlled. Conducting the CPO to
Resnet-34 model on Imagenet dataset takes almost a week
with two Geforce 1080Ti GPUs. Therefore, we are not able
to conduct many experiments to progressively increase the
expected drop to improve the performance. We believe that
if we progressively increase the Dexp to a higher number
and conduct the retraining stage for more than three epochs,
like the 8 epochs in previous experiments but at the same
time increasing the training time for the corresponding pro-
portion, or conduct the experiments with paralleled and high
bandwidth GPU devices in order to reduce the training time,
we can obtain a model with less computation by our pro-
posed CPO. In addition, for this kind of model trained on large
dataset, besides conducting filter pruning to specifically alter
the model architecture, we can still combine other methods
like quantization to help deploy the model on edge devices.

Last, we try to analyze the hardware energy efficiency with
the state-of-the-art [10]. Because there is no actual architecture
of the model in [10], we utilize FLOP to represent the cycle
count by observing that FLOP has positive correlation to the
latency in previous experiments. We can deduce from the
energy formula (E = P × T = CV 2 f × T ) that the energy is
proportional to the number of cycles ( f ×T ). If we can change
the working frequency ( f ), under the same execution time and
lower number of cycles, we can reduce the working frequency
and supply voltage to get the quadratic saving. Therefore, if we

have less cycle count for the model inference stage, we can
design a more energy efficient hardware. Compared to [10],
we have better energy efficiency on the VGG-16 model,
but with inferior energy efficiency on the Resnet-34 model
because of the remained FLOP. We believe that increasing the
retraining time to 8 epochs can help make the model converge
and then push our CPO to remove more filters among layers.

V. CONCLUSION

In this paper, we present a Computation-Performance Opti-
mization (CPO) method by removing filters in convolutional
layers of a neural network. It utilizes Sparsity, Reducing
Factor, and Performance Sensitivity to determine which and
how many filters to prune in one layer. With an expected
drop given by the user, CPO can effectively alter the model
structure according to the complexity of the task. For super-
resolution, it reduces more than 50% of parameters in VDSR
but only causes about 0.28dB in performance drop. Fur-
thermore, CPO is also proved to be efficient when applied
to image classification. We conduct VGG-19, Resnet-32 and
Mobilenet-22 (on Cifar-10) to demonstrate that it can eliminate
great amount of parameters and FLOP without significant drop
in accuracy. Compared with previous works, CPO provides a
solution to determining the layer-wise hyperparameters of filter
pruning, and achieves superior results.

VI. FUTURE WORKS

In this work, we design an algorithm to remove the redun-
dancy of deep neural networks by conducting it with strong
GPUs offline. This method is proved to be helpful for alleviat-
ing the burden of hardware computation. In the future, we will
deploy the pruned model on a real hardware system. We will
design and compare the impact of the proposed method for
different hardware architectures. Furthermore, online learning
on the hardware devices is a new trend. No matter if it is a
supervised or unsupervised learning scheme, it may need our
pruning algorithm to further reduce some of the redundancy
when learning on the new data. Therefore, we will design
a pruning methodology conducted on the online learning
devices. The relation of the performance between validation
set and testing set is another issue we can discuss. Because our
proposed CPO method will monitor the performance on the
validation set to determine the reducing factor of each layer,
the integrity of the validation set plays a role in the entire
pruning process. We will put the experiment of observing the
influence when the validation set is corrupted in our future
work. Last, it is noted that the hardware design of CNN will
be influenced by the scaling issues (ie. dropouts, batchnorm,
number of layers in dense networks and number of filters).
We focus on the number of filters in this paper and will
consider other issues in the future works.
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