
Routing Topology and Time-Division Multiplexing
Co-Optimization for Multi-FPGA Systems

Tung-Wei Lin1, Wei-Chen Tai1, Yu-Cheng Lin2, and Iris Hui-Ru Jiang12

1Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
2Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan

Email: {waynelin567, willytai43, yclin7777777, huiru.jiang}@gmail.com

Abstract—Time-division multiplexing (TDM) is widely used to
overcome bandwidth limitations and thus enhances routability
in multi-FPGA systems due to the shortage of I/O pins in an
FPGA. However, multiplexed signals induce significant delays. To
evaluate timing degradation, nets with similar criticalities are
often grouped to form NetGroups. In this paper, we propose a
framework concerning routing topology and time-division multi-
plexing co-optimization for multi-FPGA systems. The proposed
framework first generates high-quality topologies considering Net-
Group criticalities. Then, inspired by column generation, TDM
ratio assignment is solved optimally by Lagrangian relaxation.
Experimental results show that our approach outperforms the top
three entries of ICCAD 2019 CAD Contest. Moreover, our TDM
ratio assignment algorithm can further improve the results of the
top three winners to almost as good as ours.

Index Terms—Multi-FPGA Systems, Time-Division Multiplex-
ing, Lagrangian Relaxation, Column Generation, Simple Moving
Average

I. INTRODUCTION

Field-programmable gate arrays (FPGAs) have gained in popularity
nowadays because of numerous advantages such as reprogrammability,
short turn-around time, and non-recurring costs [1]. The use of FPGAs
can be found in deep-learning implementation and acceleration [2],
[3], ASIC prototyping [4], and cloud computing [5]. Compared with
the traditional single-die FPGAs, multi-FPGA systems accommodate
larger logic complexity and design capacity. However, existing multi-
FPGA systems suffer from limited inter-chip communication band-
width because the number of available I/O pins in an FPGA is
disproportionately smaller than the number of inter-FPGA signals.
Therefore, time-division multiplexing (TDM) [6] technique is proposed
to remedy this issue. TDM overcomes pin limitations by multiplexing
each physical I/O pin among multiple inter-FPGA signals. This tech-
nique allows an FPGA to transmit multiple signals in a system clock
cycle and increases routing capability in multi-FPGA systems.

As shown in Fig. 1 (b)(c), consider signals 1, 2, 3 are scheduled
to transmit through the edge (physical connection) between FPGA F2

and FPGA F3 with the TDM I/O structure, which is driven by a much
faster TDM clock. Notice that since signal 1 has a higher priority, it
accounts for 4 time slots, as opposed to signals 2 and 3, both of which
only account for 2 time slots in every clock cycle. There are in total 8
time slots in one cycle in Fig. 1 (c). Therefore, the TDM ratio of signal
1 can be computed as 8

4
= 2, while that of signals 2 and 3 are both 8

2
=

4. Due to hardware limitations, the transmission of time-multiplexed
signals are completed within the half cycle of the system clock. The
TDM ratio of a signal thus must be a positive integer multiple of 2.
Also, the reciprocals of TDM ratios of all the multiplexed signals on an
edge must have a sum no greater than 1. Though TDM alleviates the
problem caused by I/O pin shortage, the delay of transmitting signals
with TDM is much larger than that without and thus deteriorates the
timing of certain nets. A method to analyze the impact on timing is to
form NetGroups where nets with similar timing criticalities are grouped
together.

Multiple works have been proposed to approach the performance
degradation throughout the compilation flow of a multi-FPGA sys-
tem, involving netlist partitioning, inter-FPGA routing, TDM ratio

TDM Clock

F2 F31

2

3

TDM I/O

System Clock

TDM Clock

Transmitted
Signals 1 1 2 3 1 1 2 3 1 1 2 … … …

… … …

… … …

(c)

(a) (b)

1

2

3
F4 F5

F2 F3F1

F6

Fig. 1: (a) An example FPGA graph with 6 FPGAs and 7 edges.
(b) The implementation of TDM I/O. (c) The waveforms of the system
clock and the TDM clock along with the schedule to transmit signals.

assignment, pin assignment, etc. [4]. A typical compilation flow of
multi-FPGA systems is shown in Fig. 2 (a). To divide netlists into
multiple dies, Chen et al. [1] propose simultaneous signal partitioning
and grouping. As for inter-FPGA routing, Turki et al. [7] and Farooq
et al. [8] adapt Pathfinder [9] to iteratively route inter-FPGA signals.
However, neither of the works takes the concept of NetGroup into
consideration. To optimize TDM ratios, Inagi et al. [10] propose an
ILP-based formulation to assign timing-critical nets to normal wires
and non-critical nets to TDM wires but the natural limitations of ILP
confine it to problems of smaller sizes. While Pui et al. propose to
use conjugate gradient [2] and Lagrangian relaxation [3] to optimize
system clock period, these works impose more restrictions on TDM
ratios. Specifically, they require TDM ratios to be 1 or integer multiples
of 8. Also, only signals with the same TDM ratio can be assigned to
the same edge. Finally, Kuo et al. [11] address the pin assignment
problem.

TDM ratio assignment along with inter-FPGA routing is especially
important because TDM ratios directly affect the system clock pe-
riod [2], [3] and are bounded by the inter-FPGA routing results. There-
fore, we propose an inter-FPGA routing and TDM ratio assignment
co-optimization framework, as shown in Fig. 2 (b), to generate a high-
quality solution which will benefit subsequent compilation stages.

It is well known that Lagrangian relaxation (LR) has a strong
relation with column generation (CG). Nonetheless, CG has several
disadvantages. For instance, the simplex algorithm to derive optimal
dual variables is computationally expensive and the tailing effect
causes slow convergence rate [12]. On the other hand, in LR, the
subgradient method to update Lagrangian multipliers (LMs) is inex-
pensive but convergence is not guaranteed when the parameters are
not well-adjusted. To tackle this issue of LR, we propose a novel
LM update strategy using the Sigmoid function and simple moving
average (SMA) [13] inspired by timing optimization [14]–[16]. Our
LR formulation emulates the CG formulation used in GRIP [17] to
represent routing topologies. Also, we integrate the concept of pattern
generation in cutting stock [18] into TDM ratio assignment. They are
similar in the sense that cutting stock generates patterns for each fixed-
width raw stock to minimize total waste while TDM ratio assignment
generates patterns for each edge to minimize the total TDM ratio of
the most critical NetGroup. To be more specific, cutting stock problem
solves Knapsack problems [19] for its pricing problems while TDM

978-1-7281-1085-1/20/$31.00 ©2020 IEEE

Multi-FPGA System
Compilation Flow

Intra-FPGA Place & Route

Pin Assignment

Inter-FPGA Placement

Netlist Partitioning

Logic Synthesis

FPGA Graph Netlist NetGroup

Inter-FPGA Routing
All-Pair Shortest Path

MST Construction

Initial Routing

TDM Ratio Assignment
Initializing LMs

Solving LRS

Solving LDP

Legalization & Refinement

Routed Results & TDM Ratios for All Nets

for each net

No

Yes

Rip up & Reroute

Converged?

(a) (b)

Inter-FPGA Routing

TDM Ratio Assignment

Fig. 2: (a) A typical compilation flow of multi-FPGA systems. (b)
Our framework for inter-FPGA routing and TDM ratio assignment.

assignment solves Cauchy-Schwarz Inequality [20] for the Lagrangian
relaxation subproblem. The main contributions of this paper are as
follows:
• Inspired by CG, we formulate and solve the TDM ratio assignment

problem with LR optimally, the solution of which is then legalized
and refined by a fast and effective algorithm.

• We propose a novel update strategy for LMs utilizing the Sigmoid
function and SMA.

• We propose a NetGroup-aware inter-FPGA routing scheme taking
into account of the criticality of each NetGroup.
Our experiments are conducted on the benchmark suite released by

ICCAD 2019 CAD Contest [21]. Experimental results show that our
framework outperforms the top three winners. Moreover, our TDM
ratio assignment algorithm can further improve the results of the top
three winners to almost as good as ours.

The remainder of this paper is organized as follows: Sec. II intro-
duces the problem of inter-FPGA routing and TDM ratio assignment
along with the overview of our proposed method. Sec. III presents the
proposed inter-FPGA routing algorithm. Sec. IV details the proposed
TDM ratio assignment algorithm. Sec. V shows experimental results.
Finally, Sec. VI concludes this work.

II. ROUTING AND TDM RATIO ASSIGNMENT

A. Problem Formulation
A multi-FPGA system can be represented as an undirected FPGA

graph G(V,E), as shown in Fig. 1 (a), where V represents the set of
FPGAs, and E represents the set of edges (physical connections) with
TDM I/O structures. Given a netlist N of two-pin or multi-pin nets to
be routed, each NetGroup g is formed by a subset of N. A TDM ratio
is a positive integer multiple of two, and the reciprocals of the TDM
ratios on an edge must have a sum no greater than 1. The TDM ratio
of a net n is the sum of the TDM ratios assigned to n on all its routed
edges (i.e. e ∈ n). The TDM ratio of a NetGroup g is the sum of all
TDM ratios of its nets (i.e. n ∈ g).

We formally define the problem of inter-FPGA routing and TDM
ratio assignment:

Given an FPGA graph G(V,E), a set N of nets, a set G of
NetGroups, the goal is to route all the nets in N via edges in G and
assign a TDM ratio to each routed edge of each net such that the
maximum TDM ratio over all NetGroups is minimized.

B. Overview
Fig. 2 (b) illustrates the proposed optimization framework, which

consists of two major stages: inter-FPGA routing and TDM ratio
assignment. The first stage generates routing topologies for each net

considering the NetGroup information. The second stage assigns TDM
ratios so that the maximum group TDM ratio is minimized.

III. INTER-FPGA ROUTING

With an FPGA graph, a circuit netlist, and NetGroup information,
we perform NetGroup-aware inter-FPGA routing. The consideration
of NetGroup criticalities in this stage is of great importance because
optimizing TDM ratios is bounded by the routing topologies. All nets
are first routed based on KMB algorithm [22], which is a Steiner tree
approximation algorithm. Then, rip up and reroute takes place to further
improve the routing result.

A. Initial Routing

According to KMB algorithm, for each net n, a complete graph
Gc(Vn) is first constructed, where Vn denotes the set of terminals
(FPGAs) in n. The cost of edge (u, v) that connects vertices u and
v in Gc(Vn) is set as the shortest path distance from u to v in the
FPGA graph G. Second, we apply Kruskal’s algorithm [23] to find the
minimum spanning tree Gm(Vn,En) of Gc(Vn), where En is the set
of tree edges. To speed up this process, all-pair shortest path distances
are calculated and stored in a look-up table beforehand.

It is known that net ordering impacts the quality of the routing
result [24]. Therefore, we devise a scoring function θ(n) for each net
to evaluate its criticality and route those with smaller θ(n) first, where

θ(n) = max
g∈Gn

{∑
n̂∈g

cost(Gm(Vn̂,En̂))

}
. (1)

Gn denotes the set of NetGroups that include net n, and
cost(Gm(Vn,En)) is the sum of edge costs in Gm(Vn,En).
cost(Gm(Vn,En)) estimates the number of edges net n requires to
complete routing. It is obvious that the larger θ(n) is, the more likely
net n is in the NetGroup that will eventually have the maximum group
TDM ratio. Since the objective is to minimize the maximum group
TDM ratio, nets with larger θ(n) are more important and should be
routed with caution. Following the order of increasing θ(n), for each
net n, we replace each edge (u, v) in Gm(Vn,En) by the shortest
path found by Dijkstra’s algorithm [25] on G. When running Dijkstra’s
algorithm, the edge cost of e ∈ E is set as the number of nets already
routed on e. In this way, nets routed later can avoid edges that are
already crowded. Since nets routed earlier lack this information, nets
that are less important (i.e. those with smaller θ(.)) are routed first.

B. Rip up and Reroute

Rip up and reroute is widely used in routing [9]. To decide which
nets to be ripped up, we devise a scoring function φ(g) to estimate the
group TDM ratio of a NetGroup g without actually performing TDM
ratio assignment:

φ(g) =
∑
n∈g

ψ(n), where ψ(n) =
∑
e∈n

|Ne|. (2)

Ne denotes the set of nets that route through edge e, while |Ne| denotes
the cardinality of Ne. ψ(n) estimates the TDM ratio of a net n by
summing the number of routed nets on all edges routed by n. The
reasoning is that we temporarily assume the TDM ratios of all nets on
edge e have the same value, i.e. |Ne|. Since this assumption honors the
constraint that the reciprocals of TDM ratios on an edge must have a
sum no greater than 1, φ(g) is a reasonable upper bound on the group
TDM ratio of g.

Then, we find the NetGroup gmax with the largest value of φ(.)
and rip up all the nets that belong to gmax. Then, we perform KMB
algorithm [26] to reroute the nets sequentially. The edge cost of e ∈ E
is set as the number of nets in gmax that are already routed on e. This
cost function encourages the nets in gmax to route through edges not
utilized by other nets in gmax, which prevents nets within gmax from
contending for the resource of TDM ratios on the same edge.

IV. TDM RATIO ASSIGNMENT

Given the routing topology generated by the previous stage, we
perform TDM ratio assignment with an objective to minimize the
maximum group TDM ratio. In this stage, we first relax the TDM ratios
to be non-negative real numbers and solve optimally by Lagrangian
relaxation (LR). The proposed LR formulation emulates the Column
Generation (CG) formulation of GRIP [17] and integrates the concept
of pattern generation in cutting stock1 [18]. Subsequently, the solution
is legalized and refined using a fast and effective refinement algorithm.

LR is a general framework to solve constrained optimization prob-
lems. The Lagrangian relaxation subproblem (LRS) can be obtained
through dualizing the difficult constraints in the original primal
problem (PP). Therefore, LRS is an easier problem to solve and
whose optimal solution is a lower bound (for minimization problems)
on PP [27]. The violated constraints in PP are penalized by the
Lagrangian multipliers (LMs) in LRS. Additionally, the problem of
maximizing the lower bound with respect to LMs is known as the
Lagrangian dual problem (LDP). Since it is often difficult to find the
optimal LMs, which optimizes PP , the iterative method is adopted to
update LMs. We propose a novel update strategy to reduce the number
of iterations until convergence using the Sigmoid function and simple
moving average (SMA).

A. Lagrangian Relaxation
In the LR formulation to minimize the maximum group TDM ratio

on continuous domain, we introduce an auxiliary variable z > 0.
Define the parameter ane = 1 if net n is routed through edge e,
ane = 0 otherwise. Let ten be the TDM ratio assigned to net n on
edge e. Therefore, the minimization problem under the constraint that
the sum of the reciprocals of TDM ratios on an edge is less than or
equal to one can be formulated as follows:

min
t

z (PP)

s.t.
∑
n∈g

∑
e∈E

aneten≤ z, ∀g ∈ G∑
n∈Ne

1

ten
≤ 1, ∀e ∈ E.

(3)

It is clear that the coefficients of the objective function and constraints
in (3) are all positive and can be rewritten in posynomial form [27].
We dualize the first set of constraints in (3) by introducing a vector of
non-negative LMs λ = (λ1, λ2, · · · , λg, · · · , λ|G|), where λg denotes
the corresponding LM of NetGroup g. Let

Lλ(t, z) = z +
∑
g∈G

λg

(∑
n∈g

∑
e∈E

aneten − z
)
. (4)

The Lagrangian relaxation subproblem (LRS) becomes:

min
t

Lλ(t, z) (LRS)

s.t.
∑
n∈Ne

1

ten
≤ 1, ∀e ∈ E. (5)

The optimal solution of LRS given a set of λ, LRS∗(λ), provides
a lower bound on PP . The maximization of LRS∗(λ) maximizes
the lower bound. Therefore, the Lagrangian dual problem (LDP) is
defined as follows:

max
λ

LRS∗(λ) (LDP)

s.t. λg ≥ 0, ∀g ∈ G.
(6)

B. Solving LRS
By the Karush-Kuhn-Tucker (KKT) condition ∂Lλ(t, z)/∂z = 0,

we have 1−
∑

g∈G λg = 0, which the LMs must satisfy at the optimal
solution of PP . Lλ(t, z) can thus be further simplified:

Lλ(t, z) =
∑
g∈G

λg

∑
n∈g

∑
e∈E

aneten. (7)

1The cutting-stock problem is the problem of cutting fixed-width pieces of
stock material into pieces of specified widths while minimizing material wasted.

We introduce vector π = (π1, π2, · · · , πn, · · · , π|N|), where πn

represents the sum of LMs of all NetGroups that include n, i.e.
πn =

∑
g∈Gn λg . Rewrite (7) with the notations:

Lλ(t, z) =
∑
e∈E

∑
n∈Ne

∑
g∈Gn

λgten =
∑
e∈E

∑
n∈Ne

πnten. (8)

Since each summation term in (8) is independent of one another, LRS
possesses optimal substructure property and can be modified as follows.

min
t

Lλ(t, z) = min
t

∑
e∈E

∑
n∈Ne

πnten

=
∑
e∈E

(
min
te

∑
n∈Ne

πnten

)
,

(9)

where te represents the TDM ratios of the nets on edge e, which can
be viewed as a TDM ratio pattern of edge e. That is to say, we can sum
the minimum of each substructure to obtain the minimum of Lλ(t, z),
where the substructure of edge e takes the form:

min
te

∑
n∈Ne

πnten

s.t.
∑
n∈Ne

1

ten
= 1.

(10)

Because the optimal solution to LRS must occur when
∑

n∈Ne
1

ten
=

1 in (5), we adopt a more stringent constraint in each substructure as
stated in (10). This is analogous to the pattern generation in cutting
stock, where a suitable pattern for each fixed-width raw stock is
calculated by solving a Knapsack problem. Here, by applying Cauchy-
Schwarz Inequality [20], we can generate the optimal pattern for each
edge e:

(∑
n∈Ne

√
πnten

2

)(∑
n∈Ne

1
√
ten

2

)
≥

(∑
n∈Ne

√
πn

)2

→
∑
n∈Ne

πnten ≥

(∑
n∈Ne

√
πn

)2

.

(11)

According to Cauchy-Schwarz Inequality, equality holds when
1

te1√
π1

=

1
te2√
π2

= · · · =
1

ten√
πn

= · · · =
1

te|Ne|√
π|Ne|

. (12)

Combining (12) with the constraint in (10) gives

ten =

∑
n̂∈Ne

√
πn̂

√
πn

,∀n ∈ Ne. (13)

After solving all substructures, the minimum value for Lλ(t, z) and
the corresponding pattern for each edge e can be obtained.

C. Solving LDP
LDP aims at finding the suitable set of λ that penalizes the violated

constraints in PP just the right amount. The proposed multiplier
update strategy is inspired by the common technique used in timing
optimization [14]–[16], where LMs are updated in proportion to the
timing criticality of the timing arc then projected to meet the KKT
condition. Similarly, we define:

λi+1
g = λi

g

(
1 +

∑
n∈g

∑
e∈E

anet
i
en − zi

zi

)Ki
g

, (14)

where the superscripts represent the iteration and K the acceleration
factor. The numerator in the parentheses is the gradient of Lλ(t, z)
with respect to λg , which can be derived by ∂Lλ(t, z)/∂λg in (4).
(14) can be further simplified:

λi+1
g = λi

g

(∑
n∈g

∑
e∈E

anet
i
en

zi

)Ki
g

= λi
g(TDMg

i
)K

i
g , (15)

Algorithm 1 LR Based TDM Assignment

Inputs: ε, lim
Output: optimized relaxed TDM ratio assignment, LB

1: i, z, LB ← 0 // Initialize iteration, z, and lower bound
2: λig ← 1

|λi| , 1 < g ≤ |G|
3: repeat
4: Calculate πi

5: Solve LRS
6: z ← max(

∑∑
aneten)

7: LB ← Lλ(t, z)
8: Solve LDP
9: i← i+ 1

10: until i ≥ lim or ε ≥ z−LB
LB

where TDMg
i

represents the normalized group TDM ratio of Net-
Group g with respect to the maximum group TDM ratio in the i-
th iteration. As stated in (13), the optimal solution of ten is in the
form of a fraction, whose value is undefined when the denominator is
zero. With the proposed update strategy, we are able to avoid the ill-
conditioned situation since TDMg

i ∈ (0, 1]. Afterwards, we project
λi+1 to satisfy the KKT condition by dividing all λi+1

g by
∑

g∈G λ
i+1
g .

Since the selection of the acceleration factor K affects the con-
vergence rate and end result [15], [16], we detail on the proposed
tuning method of K. Due to the fact that PP is convex, there is only
one global optimum and no other local minimum. Namely, through
iterations, the difference in λi and λi+1 should diminish and λ should
gradually converge to the optimal λ∗. If the multiplier of a group λi

g

has drastic change in value between iterations, this implies that it is still
far from optimal at the i-th iteration. Therefore, the acceleration factor
Ki

g should be assigned a larger value because TDMg
i ≤ 1. On the

other hand, those multipliers with stable values across iterations should
have smaller acceleration factors. Thus, we replace the step function
that is often used in previous works [15], [16] to adjust K with the
Sigmoid function, which has a smooth transition of values. Moreover,
in statistics, simple moving average (SMA) along with windowing is
often used to smoothen a time series [13]. Hence, we are able to tell
if λg is converging by calculating the SMA of TDMg . Based on the
described observations, we define the acceleration factor Ki

g for group
g in the i-th iteration:

Ki
g = (α− 1)

(
1

1+e
−βxig

)
+ 1

xig =
TDMg

i−avgiw,g
stdiw,g

,
(16)

where α and β are preset constants that represent the magnitude and the
steepness of the Sigmoid function, respectively. w is a preset constant
that represents the window width. avgiw,g and stdiw,g are the average
and standard deviation of w sampled TDMg’s in the i-th iteration
(i.e. TDMg

i−1
, TDMg

i−2
, ..., TDMg

i−w
), respectively. Windowing

provides a more robust indicator of convergence because it eliminates
outdated data that are out of the window width w, which compensates
for the naive initialization of λ0 as stated in line 2 in Algorithm 1.
The overall flow of the LR based TDM ratio assignment can be found
in Algorithm 1. With an input convergence criterion, ε, and a limit on
the number of iterations, lim, we are able to produce an optimized
continuous TDM ratio assignment along with a lower bound LB.

D. Connection with Column Generation

As stated in Sec. I, LR has a strong relation with CG. In fact, the LR
formulation of TDM ratio assignment is inspired by its CG counterpart.
Let Te = (te1, te2, · · · , tej) be the collection of all legal patterns for
edge e, where tej represents the j-th pattern and tenj represents the
TDM ratio of net n of the j-th pattern. Let the binary decision variable
xej = 1 if the j-th pattern in Te is chosen, xej = 0 otherwise.
Therefore, the integer linear program master problem (ILPM) can

be formulated:

min
x

z (ILPM)

s.t.

|Te|∑
j=1

xej= 1, ∀e ∈ E∑
n∈g

∑
e∈E

|Te|∑
j=1

anetenjxej≤ z, ∀g ∈ G.

The dual problem (DP) of the linear relaxation of ILPM can be
derived by introducing dual variables µ = (µ1, µ2, · · · , µe, · · · , µ|E|)
and σ = (σ1, σ2, · · · , σg, · · · , σ|G|), where µe ∈ R, ∀e ∈ E and
σg ≤ 0, ∀g ∈ G. Thus, we get:

max
µ,σ

∑
e∈E

µe (DP)

s.t. µe +
∑
g∈G

σg

∑
n∈g

anetenj ≤ 0, ∀e ∈ E, j = 1, · · · , |Te|∑
g∈G

σg ≥ −1.

However, it is impractical to enumerate all legal patterns on every edge
e. Therefore, the restricted linear master problem (RLMP) is derived,
where Te in ILPM is replaced by a candidate pattern set Te and the
binary requirement on xej is relaxed so that 0 ≤ xej ≤ 1. Te is a
subset of all legal patterns (i.e. Te ⊂ Te) to which patterns will be
added after iterations.

Solving RLMP yields the optimal dual variables, µ∗ and σ∗. If
for an edge e, a new pattern te` can be found so that the constraint in
DP is violated, i.e.

∑
g∈G σg

∑
n∈g aneten` > −µe, it suggests that

te` should be added to Te to reduce z. This itself is an optimization
problem called the pricing problem (PP(Te)):

min
te`

∑
g∈G

|σg|
∑
n∈g

aneten` (PP(Te))

s.t.
∑
n∈Ne

1

ten`
≤ 1,

(17)

where the constraint that the TDM ratio must be an integer multiple
of two is relaxed. Because the optimal solution must occur when the
equality holds in the constraint in (17), PP(Te) can be rewritten in
the form identical to the substructure of e in LRS (i.e. (10)) and be
solved with Cauchy-Schwarz Inequality. However, since LR possesses
several advantages over CG, the problem of TDM ratio assignment is
approached with LR instead.

E. Legalization and Refinement

Before the output of our final solution, the result obtained from LR
is legalized and refined.

We iterate through every net on each edge and legalize the assigned
TDM ratios by taking the ceiling. If this produces odd numbers, we
increase them by 1 to make them even. Since the increase of a number
decreases its reciprocal, the sum of the reciprocals of TDMs on each
edge is guaranteed to be less than 1. Nevertheless, the summations
on some edges may be far from 1 after the legalization. If this margin
can be utilized efficiently, we can further decrease the maximum group
TDM ratio.

We propose a refinement method that iteratively decreases the TDM
ratios of some nets on an edge until no margin is left. To show how
our refinement is done, we shall first introduce the following two
observations:

• Not every net needs to be refined since refining nets that are not in
the maximum NetGroup only wastes the margin that could be more
efficiently utilized by those that are.

• The greater the TDM ratio, the higher the priority for a net to be
refined. It is obvious that decreasing the same amount on a greater
TDM ratio consumes less margin.

Based on these two observations, for each edge e, a set of candidates
Ñe (Ñe ⊆ Ne) will be selected first, then the TDM ratios of the
candidates will be decreased. Ñe is defined as:

Ñe = arg max
n∈Ne

Γ(n)

Γ(n) = max
g∈Gn

{∑
n̂∈g

∑
e∈E

an̂eten̂

}
.

(18)

Function Γ(n) returns the maximum group TDM ratio among Gn of
net n. Ñe is composed of nets in Ne that have the maximum Γ(.)
value.

A naive implementation to decrease TDM ratios of the candidates is
to heapify the TDM ratios and decrease the maximum value by 2 every
iteration until no margin is left. However, it may take many iterations
to complete the refinement process. Also, it is required to update the
heap after each iteration, which causes great computational overhead.
Therefore, this problem is addressed in another way.

We sort the candidates according to their TDM ratios in non-
increasing order once in the beginning. To maintain this order without
a heap, a reasonable decrement d is calculated every iteration and only
TDM ratios with the maximum value are decreased by d. In sum, our
refinement procedure is described below:
1) For each edge e, calculate its candidates Ñe.
2) For each edge e, initialize margin ξe as 1-tol-

∑
n∈Ne

1
ten

, where
tol is a preset tolerance due to floating point imprecision.

3) For each edge e, decrease the TDM ratios of its candidates by
running Algorithm 2.
In Algorithm 2, starting from line 3 to 10, the TDM ratios of the

candidates are refined and the margin is updated. m and d in line 5
represent the number of TDM ratios with the maximum value and the
decrement, respectively. Note that there may be more than one TDM
ratio with the same maximum value on edge e. The mechanism of
updating ξe is

ξi+1
e = ξie −m

(1

tmax − d
− 1

tmax

)
, (19)

because there are m TDM ratios with the value of tmax being decreased
by d. The function CALCMD calculates the decrement, d, and updates
m. Ideally, the entire margin is consumed after subtracting d from each
tmax. Simply put, we expect

ξe = m
(1

tmax − d
− 1

tmax

)
. (20)

Thus, we get

d =
ξet

2
max

ξetmax +m
. (21)

However, to maintain the order as described previously, d must not
exceed b, which is the difference between the largest and the second
largest value. Otherwise, d will be pruned in line 17. Then, d is
legalized in line 18.

V. EXPERIMENTAL RESULTS

The proposed optimization framework is implemented in the C++
programming language and evaluated on a workstation with 197GB
memory and 2 Intel Xeon E5-2650 v2 @ 2.6GHz CPUs. The experi-
ments are conducted on the benchmark suite released by ICCAD 2019
CAD Contest [21]. Table I lists the benchmark statistics.

Aside from comparing our results with the ‘1st’, ‘2nd’, and ‘3rd’
place winners, based on their routing topologies, we apply our TDM
ratio assignment algorithm to show that their solutions can be further
improved. The binaries provided by the top three winners are evaluated
on our platform for fair comparison. The LR convergence criterion ε
is set as 0.27% from synopsys01 to synopsys05 and as 0.05% from
synopsys06 to hidden03 because their lower bounds are much larger.
Note that when ε = 0.27%, the difference between the maximum group
TDM ratio and the lower bound is about 100 for synopsys01. The
window size w, the magnitude α, and the steepness β of the Sigmoid
function are set as 10, 3, and 10 for all benchmarks, respectively.

Algorithm 2 Decreasing TDM Ratios

Inputs: edge e, legalized TDM ratios on e, Ñe, ξe
Output: the refined result

1: T̃e ← TDM ratios of the candidates sorted in non-increasing order
2: m← 0
3: while ξe is large enough do
4: tmax ← T̃e[0]
5: m, d← CALCMD(m, ξe, tmax, T̃e)
6: for j ← 0 to m− 1 do
7: T̃e[j] ← T̃e[j]−d
8: end for
9: Update margin ξe with Eq. 19

10: end while

11: function CALCMD(m, ξe, tmax, T̃e)
12: repeat
13: m← m+ 1
14: until tmax 6= T̃e[m]
15: b← tmax − T̃e[m] // the budget for the decrement
16: d← Calculate decrement with Eq. 21
17: d← min(d, b)
18: d← greatest even integer less than or equal to d
19: return m, d
20: end function

Table II shows our results and comparisons with the top three
winners. It can be seen that the proposed framework achieves much
better quality. Specifically, an average improvement by 4.53%, 1.89%,
and 1.13% over ‘1st’, ‘2nd’, and ‘3rd’ is observed, respectively.

As stated in Sec. IV-E, legalization and refinement are performed
after LR to satisfy all constraints on TDM ratios. In Table II, it
can be seen that the maximum group TDM ratios (‘GTRmax’) of all
benchmarks after refinement are consistently better than those without
(‘GTRnoref’). Furthermore, legalization and refinement are efficient and
only account for 0.44% of total runtime, as shown in Fig. 3 (a).

With LR being the runtime bottleneck, we present the LR conver-
gence graph of synopsys01 in Fig. 3 (b). It is obvious that the overall
convergence curve is smooth except for the little bump at about the
sixth iteration. Our conjecture is that it is caused by the LM projection
to satisfy the KKT condition.

Finally, we read in the routing topologies of the top three winners
and apply our TDM ratio assignment algorithm, which includes LR,
legalization, and refinement. The runtimes of TDM ratio assignment
only (‘TimeTA’) are listed in Table II, where the runtime of file
I/O is subtracted for fair comparison. We can greatly improve the
solutions of the top three winners and achieve results almost as good
as our proposed framework. For pursuing a better solution quality, our
runtimes are acceptable for practical use of large-scale multi-FPGA
systems.

The lower bounds (‘LBs’) on the maximum group TDM ratios
at convergence are listed in Table II as well. As stated in Sec. III,
TDM ratios are bounded by the routing topologies. It is theoretically
impossible to achieve maximum group TDM ratio lower than LB given
that the integrality constraint of TDM ratios is relaxed in LR. Take
synopsys04 and synopsys05 for example, the LB of the top three
winners are all larger than our legalized and refined solution. Therefore,
with their routing topologies, there exists no TDM ratio assignment
solution that is able to yield a better result than ours.

VI. CONCLUSION

This paper presents an inter-FPGA routing and TDM ratio co-
optimization framework. First, routing topologies of high quality are
generated taking into account of the NetGroup criticalities. Second,
an LR formulation inspired by CG is proposed to solve TDM ratio
assignment optimally, followed by a fast and effective legalization
and refinement algorithm. Furthermore, a novel LM update strategy is
proposed to achieve faster LR convergence. Experimental results based
on ICCAD 2019 CAD Contest show that the proposed framework
is effective and outperforms the top three winners. Moreover, the

TABLE I: Statistics of the ICCAD 2019 CAD Contest benchmark suite.

Benchmark synopsys01 synopsys02 synopsys03 synopsys4 synopsys05 synopsys06 hidden01 hidden02 hidden03

#FPGAs 43 56 114 229 301 410 73 157 487

#Edges 214 157 350 1087 2153 1852 289 803 2720

#Nets 6.85× 104 3.50× 104 3.03× 105 5.52× 105 8.81× 105 7.86× 105 5.43× 104 6.11× 105 7.21× 105

#NetGroups 4.06× 104 5.60× 104 3.35× 105 4.65× 105 8.79× 105 9.11× 105 5.04× 104 5.02× 105 8.87× 105

TABLE II: Comparison with top three winners of ICCAD 2019 CAD Contest. ‘TA’ stands for our TDM Ratio Assignment algorithm,
‘GTRmax’ stands for the maximum group TDM ratio, ‘LB’ is the lower bound when convergence occurs, ‘Iter’ is the number of iterations until
convergence, ‘Timeall’ stands for the runtime of the program while ‘TimeTA’ stands for the runtime of TDM ratio assignment only, ‘GTRnoref’
represents the maximum group TDM ratio after legalization without refinement. All runtimes are reported in seconds.

Benchmark synopsys01 synopsys02 synopsys03 synopsys04 synopsys05 synopsys06 hidden01 hidden02 hidden03 Ratio

1st GTRmax 40, 498 32, 008, 188 128, 205, 938 7, 049, 316 5, 190, 132 15, 754, 099, 480 409, 306, 936 45, 942, 235, 550 4, 867, 325, 852 1.045

Timeall 0.387 0.575 7.100 20.692 47.863 82.228 1.205 27.562 84.181 0.259

1st
+TA

GTRmax 37, 090 31, 622, 072 127, 061, 384 6, 206, 132 4, 540, 842 15, 743, 818, 488 408, 516, 862 45, 934, 879, 556 4, 859, 550, 180 1.001

LB 36, 955 31, 547, 226 126, 722, 203 6, 199, 868 4, 535, 910 15, 735, 999, 959 408, 313, 892 45, 930, 800, 654 4, 857, 160, 610 1.001

Iter 60 17 45 241 205 16 9 470 34 1.337

TimeTA 0.604 0.950 21.861 233.350 252.292 200.467 1.384 1, 503.890 369.918 1.812

2nd GTRmax 40, 190 32, 093, 856 129, 290, 206 6, 334, 724 4, 613, 110 15, 759, 302, 934 409, 891, 196 45, 952, 594, 974 4, 872, 933, 150 1.019

Timeall 0.866 0.791 11.074 66.365 144.283 109.127 1.610 38.900 125.514 0.459

2nd
+TA

GTRmax 37, 184 31, 588, 462 127, 040, 124 6, 203, 572 4, 538, 206 15, 743, 640, 666 408, 501, 736 45, 934, 800, 476 4, 859, 377, 142 1.001

LB 37, 086 31, 545, 724 126, 700, 671 6, 196, 627 4, 534, 101 15, 735, 809, 893 408, 298, 954 45, 930, 656, 201 4, 857, 004, 279 1.001

Iter 56 15 47 231 214 16 13 306 34 1.175

TimeTA 0.508 0.964 26.277 177.140 283.146 160.464 1.527 681.736 292.768 1.323

3rd GTRmax 37, 970 31, 739, 100 127, 594, 618 6, 397, 142 4, 662, 236 15, 749, 500, 940 408, 864, 514 45, 941, 043, 974 4, 865, 375, 688 1.011

Timeall 1.126 1.158 10.910 30.803 69.500 62.716 2.031 35.307 62.349 0.452

3rd
+TA

GTRmax 37, 098 31, 642, 464 127, 270, 870 6, 220, 422 4, 539, 304 15, 744, 786, 882 408, 523, 146 45, 934, 499, 142 4, 860, 416, 914 1.002

LB 36, 938 31, 573, 875 126, 934, 795 6, 204, 359 4, 535, 243 15, 737, 428, 024 408, 326, 740 45, 931, 024, 081 4, 857, 979, 920 1.001

Iter 62 17 49 172 227 18 9 78 34 0.920

TimeTA 0.444 1.123 28.051 136.239 331.423 175.820 1.350 242.230 354.342 1.127

Ours

GTRnoref 37, 084 31, 646, 556 127, 207, 730 6, 191, 608 4, 540, 368 15, 749, 712, 634 408, 785, 238 45, 936, 434, 558 4, 862, 187, 438 1.001

GTRmax 37,030 31,572,618 127,010,440 6,183,236 4,530,238 15,743,597,786 408,485,298 45,930,934,516 4,859,356,834 1

Timeall 0.756 1.468 27.459 143.650 448.940 267.530 3.930 285.370 410.100 1

LB 36, 937 31, 534, 791 126, 674, 838 6, 174, 412 4, 527, 638 15, 735, 824, 363 408, 311, 023 45, 930, 673, 641 4, 856, 987, 237 1

Iter 62 15 47 185 320 16 15 106 34 1

TimeTA 0.480 0.817 20.179 120.438 385.511 149.124 1.514 229.310 265.431 1

67.75%

24.11%

5.26%
2.45% 0.44%

(a)

34000

36000

38000

40000

42000

44000

46000

1 6 11 16 21 26 31 36 41 46 51 56 61

TD
M

Ra
ti
o

Iterations

z
LB

(b)

Fig. 3: (a) The pie chart to illustrate the average runtime of each
stage in the proposed framework. (b) The LR convergence graph of
synopsys01. The labels in (a) are as follows: Lagrangian Relaxation:
67.75%, Inter-FPGA Routing: 24.11%, Input File Parsing: 5.26%,

Output File Writing: 2.45%, Legalization & Refinement: 0.44%.

proposed TDM ratio assignment algorithm can further improve their
results to almost as good as ours.

REFERENCES

[1] S.-C. Chen et al., “Simultaneous partitioning and signals grouping for
time-division multiplexing in 2.5 D FPGA-based systems,” in Proc.
ICCAD, 2018, pp. 1–7.

[2] C.-W. Pui et al., “An analytical approach for time-division multiplexing
optimization in multi-FPGA based systems,” in Proc. SLIP, 2019, pp. 1–8.

[3] C.-W. Pui and E. F. Y. Young, “Lagrangian relaxation-based time-division
multiplexing optimization for multi-FPGA systems,” in Proc. ICCAD,
2019, pp. 1–8.

[4] W. N. Hung and R. Sun, “Challenges in large FPGA-based logic emulation
systems,” in Proc. ISPD, 2018, pp. 26–33.

[5] G. R. Chiu et al., “Flexibility: FPGAs and CAD in deep learning
acceleration,” in Proc. ISPD, 2018, pp. 34–41.

[6] J. Babb et al., “Logic emulation with virtual wires,” TCAD, vol. 16, no. 6,
pp. 609–626, 1997.

[7] M. Turki et al., “Iterative routing algorithm of inter-FPGA signals for
multi-FPGA prototyping platform,” in Proc. ARC, 2013, pp. 210–217.

[8] U. Farooq et al., “Inter-FPGA routing environment for performance
exploration of multi-FPGA systems,” in Proc. RSP, 2016, pp. 1–7.

[9] L. McMurchie and C. Ebeling, “PathFinder: A negotiation-based
performance-driven router for FPGAs,” in Proc. FPGA, 1995, pp. 111–
117.

[10] M. Inagi et al., “Globally optimal time-multiplexing in inter-FPGA con-
nections for accelerating multi-FPGA systems,” in Proc. FPL, 2009, pp.
212–217.

[11] W.-S. Kuo et al., “Pin assignment optimization for multi-2.5D FPGA-
based systems,” in Proc. ISPD, 2018, pp. 106–113.

[12] D. Huisman et al., Combining column generation and Lagrangian relax-
ation, 2005, pp. 247–270.

[13] A. Raudys et al., “Moving averages for financial data smoothing,” in
Information and Software Technologies, 2013, pp. 34–45.

[14] A. Sharma et al., “Fast Lagrangian relaxation based gate sizing using
multi-threading,” in Proc. ICCAD, 2015, pp. 426–433.

[15] A. Sharma et al., “Rapid gate sizing with fewer iterations of Lagrangian
relaxation,” in Proc. ICCAD, 2017, pp. 337–343.

[16] D. Mangiras et al., “Timing-driven placement optimization facilitated by
timing-compatibility flip-flop clustering,” TCAD (Early Access), 2019.

[17] T. Wu et al., “GRIP: Global Routing via Integer Programming,” TCAD,
vol. 30, no. 1, pp. 72–84, 2011.

[18] P. C. Gilmore and R. E. Gomory, “A linear programming approach to the
cutting-stock problem,” Oper. Res., vol. 9, no. 6, pp. 849–859, 1961.

[19] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity
of computer computations, 1972, pp. 85–103.

[20] A. Z. Grinshpan, “General inequalities, consequences and applications,”
Advances in Applied Mathematics, vol. 34, no. 1, pp. 71–100, 2005.

[21] “2019 CAD Contest: System-level FPGA Routing with Time Division
Multiplexing Technique,” http://iccad-contest.org/2019/problems.html.

[22] L. Kou et al., “A fast algorithm for Steiner trees,” Acta informatica, vol. 15,
no. 2, pp. 141–145, 1981.

[23] J. B. Kruskal, “On the shortest spanning subtree of a graph and the
traveling salesman problem,” in Proc. American Mathematical Society,
vol. 7, no. 1, 1956, pp. 48–50.

[24] H.-Y. Chen and Y.-W. Chang, “Global and detailed routing,” Electronic
Design Automation: Synthesis, Verification, and Test, pp. 687–750, 2009.

[25] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[26] K. Mehlhorn, “A faster approximation algorithm for the Steiner problem
in graphs,” Information Processing Letters, vol. 27, no. 3, pp. 125–128,
1988.

[27] R. K. Ahuja et al., “Lagrangian relaxation and network optimization,”
Network Flows: Theory, Algorithms, and Applications, pp. 598–648, 1993.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32

 D:20170126085122
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 5.40 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 5.4000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

