
Graceful Register Clustering by Effective Mean Shift Algorithm
for Power and Timing Balancing∗

Ya-Chu Chang
Institute of Electronics

 National Chiao Tung University
 Hsinchu 30010, Taiwan
qwha019@yahoo.com.tw

Tung-Wei Lin
 Department of Electrical Engineering

 National Taiwan University
 Taipei 10617, Taiwan

 b04502032@ntu.edu.tw

Iris Hui-Ru Jiang
Graduate Institute of Electronics Engineering

 National Taiwan University
 Taipei 10617, Taiwan

huiru.jiang@gmail.com

Gi-Joon Nam
 Thomas J. Watson Research Center

IBM Research
 Yorktown Heights, NY 10598, USA

gnam@us.ibm.com

ABSTRACT
As the wide adoption of FinFET technology in mass production,
dynamic power becomes the bottleneck to achieving low power.
Therefore, clock power reduction is crucial in modern IC design.
Register clustering can effectively save clock power because of
significantly reducing the number of clock sinks and register pin
capacitance, clock routed wirelength, and the number of clock
buffers. In this paper, we propose effective mean shift to
naturally form clusters according to register distribution without
placement disruption. Effective mean shift fulfills the
requirements to be a good register clustering algorithm because
it needs no prespecified number of clusters, is insensitive to
initializations, is robust to outliers, is tolerant of various register
distributions, is efficient and scalable, and balances clock power
reduction against timing degradation. Experimental results show
that our approach outperforms state-of-the-art work on power
and timing balancing, as well as efficiency and scalability.

KEYWORDS
Register clustering; Clock power; Timing; Clustering; Mean shift

ACM Reference format:
Ya-Chu Chang, Tung-Wei Lin, Iris Hui-Ru Jiang, and Gi-Joon Nam. 2019.
Graceful Register Clustering by Effective Mean Shift Algorithm for
Power and Timing Balancing. In Proceedings of 2019 International
Symposium on Physical Design (ISPD '19). ACM, New York, NY, USA, 8
pages. https://doi.org/10.1145/3299902.3309753

1 INTRODUCTION
The wide adoption of FinFET technology at advanced nodes
results in a dramatic drop in leakage power; therefore, dynamic
power is now the bottleneck to achieving low power in modern
IC design [1][2][3]. Clock power has been considered the
dominant contributor to dynamic power because of its high
toggle rate and large capacitive loading.

In addition to voltage scaling and clock gating, register
clustering is an effective technique to save clock power. Register
clustering, which gathers registers1 into clusters, reduces the
switching capacitance in a clock network in the following
aspects (see Fig. 1): 1) The clock sink capacitance (in terms of
register capacitance) is lowered because the number of clock
sinks is greatly reduced. Furthermore, by sharing clocking
circuitry within the cell, a multi-bit register has a smaller pin
capacitance at the clock sinks than separate single-bit registers. 2)
The clock network capacitance (in terms of clock routed

1A register generally means a sequential element, i.e., a flip-flop or a latch.

*This work was supported in part by Synopsys, TSMC, and MOST of Taiwan under
Grant MOST 106-2628-E-002-019-MY3.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
ISPD '19, April 14–17, 2019, San Francisco, CA, USA.
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6253-5/19/04...$15.00
https://doi.org/10.1145/3299902.3309753

Figure 1. Register clustering reduces the switching
capacitance in a clock network in all aspects.

CK

FF

FF

FF

FF

FF

FF

FF

FF
: clock buffer

CK

FF
: clock routed WL

: clock source

: register

FF

CK

FF

FF FF

FF FF

FF FF
register clustering

Session: New Advances in Placement ISPD ’19, April 14–17, 2019, San Francisco, CA, USA

11

https://doi.org/10.1145/as-assigned-during-rightsreview

wirelength and clock buffers) is lessened because the depth of
clock tree becomes shallow.

Recently, studies have extensively investigated register
clustering, e.g., [5][6][7][8][9][10][11][12][13]. Depending on the
available bit numbers, there exist two register cluster designs
presented in literature: 1) Rigid cell [6][7][8][9][10][11][12][13],
i.e., discrete bits. 2) Flexible template (structured latch template)
[4][5], i.e., each template covers a range of bits instead of a
specific number.

Most of existing works perform either in-placement or post-
placement register clustering, and their solutions fall into two
main categories: clique partitioning and K-means clustering. The
clique partitioning approach first constructs a compatibility
graph (recording the clustering compatibility between any two
registers based on their timing feasible regions) and then
extracts maximal cliques to form multi-bit registers without
timing degradation [6][7][8][9][10][13]. The most up-to-date
results were reported by Seitanidis et al. in [13], who
enumerated all valid multi-bit registers from these cliques and
then formulated an integer linear program (ILP) to generate as
few feasible multi-bit registers as possible.

On the other hand, the K-means approach relaxes timing
constraints to maximum displacement constraints, trying to
minimize the impact on timing. K-means, however, is sensitive
to initializations and outliers (distant from other registers) [14];
it starts with a prespecified number of clusters and initial cluster
centers (seeds), iteratively assigns registers to nearest clusters,
and finally converges to a local minimum of within-cluster total
displacement [5][11][12]. Very recently, for minimizing the
number of generated clusters, Wu et al. in [11] proposed
weighted K-means, introducing a cluster size balancing weight
into displacement cost. Because they intended to form large
clusters (nearly maximum allowable bits of a register cell) and
possibly moved outliers away, significant timing degradation
cannot be avoided. Moreover, adding weights cannot guarantee
elimination of oversized clusters; thus, additional processes were
performed to fix over-displacement on outliers and control size
overflows. Later, Kahng et al. in [12] adopted capacitated K-
means and ILP to form feasible sized clusters. Nevertheless, due
to high complexities, clique enumeration and ILP may not be
applicable for large multi-bit register cells or large-scale designs.

Consider a timing-optimized placement as the input. Creating
large clusters or dragging outliers far away inevitably causes
large disruption to placement thus incurring significant timing
degradation. The more timing degradations, the more timing
ECO efforts. Besides, once registers are clustered (even few), we
can save clock power. Based on these investigations, a good
register clustering algorithm is desired 1) to require no
prespecified number of clusters, 2) to be insensitive to
initializations, 3) to be robust to outliers, 4) to be tolerant of
various register distributions, 5) to be efficient and scalable, and
6) to balance power and timing.

Therefore, in this paper, we propose effective mean shift to
perform graceful register clustering for reducing clock power
while minimizing timing degradation (see Fig. 2). Effective mean

shift augments classic mean shift with special treatments for
register clustering to attain these goals.

Conceptually, clusters are expected to reside in dense regions
of registers. Our idea is to direct registers towards their nearest
densest spots to form clusters naturally.

In our effective mean shift algorithm, the register distribution
is first mapped to a density surface; dense regions form hills.
Each register climbs up (shifts) to the nearest peak in a specified
search window. For register clustering, the search window
(bandwidth) reflects timing criticality and local density/sparsity.
Furthermore, we propose to consider effective neighbors via k-
nearest neighbors (KNN) during iterative shift vector
computation for efficiency and stability. Subsequently, we
reassign registers and relocate clusters to further improve
displacement (for timing) and refine cluster count (for power).

Effective mean shift fulfills the aforementioned requirements
for being a good register clustering algorithm.

1) It requires no prespecified number of clusters. It exploits
the density of registers to generate a reasonable number of
clusters naturally.

2) It is insensitive to initializations. Actually, no initial seeds
are needed.

3) It is robust to outliers. Our effective neighbor consideration
and bandwidth setting prevent outliers in sparse regions from
over-displacement.

4) It is tolerant of various register distributions. According to
local density and sparsity, our clustering can tolerate uneven
register distribution.

5) It is efficient and scalable. Our KNN and bandwidth setting
expedites shift vector computation for each register, and our
algorithm is highly parallelizable.

6) It balances power reduction against timing degradation
because of graceful register clustering.

Our approach is evaluated by 2015 CAD Contest in
incremental timing-driven placement benchmark suite [20],
containing 768K~1932K cells with 101K~262K registers. Our
approach is compared with physical design flows without
performing register clustering and with the weighted K-means
clustering [11]. Compared with the flow without register
clustering, our method has achieved 75% reduction on clock
routed wirelength, 46% decrease on clock buffer usage, and 26%
savings on clock sink power with less than 2% timing
degradation (in terms of total negative slack). The weighted K-
means flow suffers from 11% timing degradation but with 1~2%
more savings than ours on clock power. Our respective

Figure 2. Graceful register clustering.

Macro1
Macro2 Macro3 Macro4

Macro5

Macro6 Macro7
Macro8

: macro: I/O pin: outlier: clusterable registers

Session: New Advances in Placement ISPD ’19, April 14–17, 2019, San Francisco, CA, USA

12

maximum register displacement and total register displacement
is 19% and 43% of weighted K-means. For efficiency and
scalability, our method achieves 39X (single-threaded) and 215X
(multi-threaded) speedups compared with weighted K-means.

The remainder of this paper is organized as follows. Section 2
introduces preliminaries about the classic mean shift algorithm
and describes the register clustering design methodology
adopted in this paper. Section 3 details register clustering based
on our effective mean shift algorithm. Section 4 shows
experimental results. Finally, Section 5 concludes this work.

2 PRELIMINARIES

2.1 Classic Mean Shift Algorithm
Classic mean shift was introduced by Fukunaga and Hostetler
[15], generalized by Cheng [16], and applied to cluster analysis
in various fields, e.g., Computer Vision [17].

First, it views the data points are samples from a probability
density function. Placing a kernel on each data point (Gaussian
kernel is widely used [16][17]) and adding all of the individual
kernels up generates a density surface (see Fig. 3). Considering a
kernel 𝑘 of bandwidth ℎ, the kernel density estimator for a 𝑑-
dimensional data point 𝑥 is

𝑓(𝑥) =
1

𝑛ℎ𝑑
∑ 𝑘 (

𝑥−𝑥𝑖

ℎ
)𝑛

𝑖=1 . (1)

If dense regions are present, then they correspond to local
maxima of the density surface, and clusters associated with these
local maxima can be identified. Classic mean shift iteratively
shifts each data point uphill until it reaches the nearest peak of
density surface within the bandwidth ℎ.

The algorithm starts with making a copy of the original data
points and freezing the original ones. The copied points are
iteratively shifted against the original frozen points. The shift 𝑚
of each point is computed by performing gradient ascent on the
density function until it converges to a stationary point.

𝑚(𝑥) =
∑ 𝑥𝑖𝑔(‖

𝑥−𝑥𝑖
ℎ

‖
2
)𝑛

𝑖=1

∑ 𝑔(‖
𝑥−𝑥𝑖
ℎ

‖
2
)𝑛

𝑖=1

− 𝑥, (2)

where Gaussian kernel function 𝑘(𝑥) = 𝜅(‖𝑥‖2), ‖𝑥‖2 means
squared Euclidean distance, and gradient 𝑔(𝑥) = −𝜅′(𝑥). 𝑚(𝑥)
points towards the direction of maximum increase in density.
Finally, all points associated with the same stationary point

belong to the same cluster.
The main disadvantage of classic mean shift is its inefficiency;

its time complexity is of 𝑂(𝑇𝑛2), where 𝑇 is the number of
iterations, and 𝑛 is the number of data points.

Classic mean shift shares the same kernel bandwidth ℎ for all
data points. Depending on the kernel bandwidth parameter used,
the resultant density function and end clustering will vary. The
bandwidth value is chosen based on domain-specific knowledge.

2.2 Problem Formulation and Methodology
In register clustering, data points represent registers in a given
placement (i.e., a two-dimensional plane, 𝑑 = 2). The induced
register displacement can be approximated as the Manhattan
distance between each register and the cluster center.

The inputs of the register clustering problem are a timing-
optimized placement, multi-bit register library, and a user-
defined maximum allowable displacement. Then, for saving clock
power without placement/timing disruption, our goal is to
minimize the total sum of register displacement as well as the
number of clusters, while satisfying the cluster size constraint
and maximum displacement constraints. The cluster size
constraint is a given constant value according to the register
library, while the maximum displacement for each register is set
according to its timing criticality and the given maximum
allowable displacement.

It can be seen that the classic mean shift algorithm cannot be
directly applied due to the extra constraints and the efficiency
requirement. We shall detail how we handle them by our
effective mean shift in Section 3.

Fig. 4 shows the register clustering methodology adopted in
this paper. Register clustering can be performed either post-
placement or in-placement (if incremental placement is allowed).

3 EFFECTIVE MEAN SHIFT ALGORITHM

3.1 Overview
In this section, we propose effective mean shift to perform
graceful register clustering for reducing clock power while
minimizing timing degradation. We augment classic mean shift
with special treatments for register clustering.

Effective mean shift naturally forms clusters according to
register distribution without placement disruption. First, the

(a) (b)

Figure 3. Classic mean shift. (a) Density surface. (b) Data
distribution with density contour.

Y

cluster
data point

outlier

peak

Figure 4. Register clustering methodology.

Effective Mean Shift
Timing-driven placement

Logic synthesis

Clock tree synthesis

Routing

Tape Out

Tech fileInitial placement Register library

For each register

Setting timing-aware bandwidth

Identifying effective neighbors

Constructing density surface

Clustering by local maxima

Register clustering

Relocating clusters and registers

Legalization

Clock tree report Timing report

Shifting to local maximum

Session: New Advances in Placement ISPD ’19, April 14–17, 2019, San Francisco, CA, USA

13

register distribution is mapped to a density surface; dense
regions form hills. Each register climbs up (shifts) to the nearest
peak in a specified search window.

The search window (bandwidth) of each register varies and
reflects its timing criticality and local density/sparsity.
Furthermore, for efficiency and stability, we propose to consider
effective neighbors via k-nearest neighbors (KNN) during
iterative shift vector computation. Subsequently, we reassign
registers and relocate clusters to further improve displacement
(for timing) and refine cluster count (for power). Table 1
summarizes classic, adaptive, and effective mean shift.

3.2 Variable Bandwidth Selection
The kernel bandwidth parameter affects the resultant density
function and clustering. As an extreme case, we use extremely
tall skinny kernels (i.e., an extremely small bandwidth). The
resultant density surface has a peak at each point, and thus each
point forms its own cluster. In contrast, if we use an extremely
short fat kernels (i.e., an extremely large bandwidth). The
resultant wide smooth density surface has only one peak where
all points climb up, forming one cluster. Kernels in between
these two extremes lead to nicer clustering results.

Classic mean shift uses a fixed kernel bandwidth for all points.
Nevertheless, the kernel bandwidth confines the search window
of each point. Thus, for register clustering, each register is
desired to have a variable bandwidth to reflect its timing
criticality and local distribution. Then, the density function can
be defined based on [18]:

𝑓(𝑥) =
1

𝑛
∑

1

ℎ𝑖
𝑑 𝑘 (

𝑥−𝑥𝑖

ℎ𝑖
)𝑛

𝑖=1 . (3)

The shift vector becomes:

 𝑚(𝑥) =
∑

𝑥𝑖

ℎ𝑖
𝑑+2 𝑔(‖

𝑥−𝑥𝑖
ℎ𝑖

‖
2

)𝑛
𝑖=1

∑
1

ℎ𝑖
𝑑+2𝑔(‖

𝑥−𝑥𝑖
ℎ𝑖

‖
2

)𝑛
𝑖=1

− 𝑥. (4)

For a register lying in dense regions, we select a small
bandwidth, thus identifying the local maximum quickly in a
narrow neighborhood and avoiding a large cluster size. Hence,
considering local distribution, bandwidth is first set to as the
distance to its M-th nearest neighbor (see Fig. 5). Furthermore,
considering the timing criticality and maximum allowable
displacement, the bandwidth of register 𝑖 is

ℎ𝑖 = min(ℎmax, 𝛼‖𝑥𝑖 − 𝑥𝑖,𝑀‖), (5)

where ℎmax denotes the maximum allowable displacement,
‖𝑥𝑖 − 𝑥𝑖,𝑀‖ means the Euclidean distance between register 𝑖 and
its M-th nearest neighbor (𝑥𝑖,0 = 𝑥𝑖), and 𝛼 is a timing criticality
coefficient; 𝛼 → 0 for the most critical register (i.e., a very tall
and skinny kernel).

3.3 Identifying Effective Neighbors
Classic mean shift considers all original data points during shift
vector computation (𝑛 is usually large in practice, 101K~262K in
our experiments).

However, the points that correspond to the tails of the
underlying density function receive small weights in Equations
(3) and (4), and thus they are almost automatically discarded.
Moreover, we do not expect registers to travel far away (for
minimizing disturbance to timing and placement), and try to
avoid oversized clusters. Thus, we can ignore distant registers.

For achieving this goal, we identify effective neighbors via
KNN, 𝐾 ≪ 𝑛 . In addition, registers belonging to KNN of a
register but beyond the maximum allowable displacement are
also excluded (see Fig. 6). Hence, for a register at 𝑥𝑗, we consider
the following set of registers during the computation:

𝑖 ∈ 𝐾𝑁𝑁(𝑥𝑗) − {𝑥𝑗,𝑚|‖𝑥𝑗 − 𝑥𝑗,𝑚‖ > ℎmax, 𝑚 ≤ 𝐾}

= 𝐾𝑁𝑁′(𝑥𝑗). (6)

The density function can be rewritten as:

𝑓(𝑥) =
1

𝑛
∑

1

ℎ𝑖
𝑑 𝑘 (

𝑥−𝑥𝑖

ℎ𝑖
)

𝑖∈𝐾𝑁𝑁′(𝑥) . (7)

The shift vector becomes:

 𝑚(𝑥) =
∑

𝑥𝑖

ℎ𝑖
𝑑+2𝑔(‖

𝑥−𝑥𝑖
ℎ𝑖

‖
2

)
𝑖∈𝐾𝑁𝑁′(𝑥)

∑
1

ℎ𝑖
𝑑+2𝑔(‖

𝑥−𝑥𝑖
ℎ𝑖

‖
2

)𝑖∈𝐾𝑁𝑁′(𝑥)

− 𝑥. (8)

Although the idea of effective neighbors greatly improves the
efficiency of shift vector computation, when the number of
iterations to convergence is large, iteratively updating effective
neighbors may still be computation intensive.

Table 1. Comparison of Classic, Adaptive, Effective Mean Shift.

Classic Mean Shift
Adaptive Mean Shift
(Variable Bandwidth) Effective Mean Shift

Density estimator

Shift point

1. , Gaussian kernel 2. 3.

Figure 5. Bandwidth selection based on the distance to M-th
nearest neighbor (𝑴 = 𝟐).

ℎ𝑖

ℎ𝑗

register

Figure 6. Effective neighbors identified by KNN (𝑲 = 𝟏𝟐).

ℎ

ignored register

excluded neighbor

Session: New Advances in Placement ISPD ’19, April 14–17, 2019, San Francisco, CA, USA

14

Hence, we analyze members of effective neighbors.
Compared with the initial set of effective neighbors, distinct
neighbors that appear throughout the entire clustering process
are few. For the sample circuits, we randomly monitor 100
registers and update their effective neighbors via KNN as 𝐾 =

140 at every iteration. Table 2 lists the statistics on average total
distinct neighbors. Since neighbors barely change, effective
neighbors can be identified only once (at the beginning).

3.4 Shifting to Local Density Maxima
After identifying effective neighbors and selecting a proper
bandwidth for each register, we construct the density surface.
We make a copy of the original register coordinates and freezing
the original ones. The copied coordinates {𝑦𝑗

𝑡} (𝑡 denotes the
iteration index) are iteratively shifted against the original frozen
points {𝑥𝑗}. Hence, each register undergoes the following steps
to seek the local density maximum.

1. Set the initial coordinates, 𝑦𝑗
0 = 𝑥𝑗 , 𝑗 = 1. . 𝑛.

2. Identify effective neighbors, 𝐾𝑁𝑁′(𝑦𝑗
0); set bandwidth ℎ𝑗 .

3. Compute the mean shift vector 𝑚(𝑦𝑗
𝑡) by Equation (8).

4. Shift each register,

𝑦𝑗
𝑡+1 = 𝑦𝑗

𝑡 + 𝑚(𝑦𝑗
𝑡) =

∑
𝑥𝑖

ℎ𝑖
𝑑+2𝑔(‖

𝑦𝑗
𝑡−𝑥𝑖

ℎ𝑖
‖

2

)
𝑖∈𝐾𝑁𝑁′(𝑦𝑗

0)

∑
1

ℎ𝑖
𝑑+2𝑔(‖

𝑦𝑗
𝑡−𝑥𝑖

ℎ𝑖
‖

2

)
𝑖∈𝐾𝑁𝑁′(𝑦𝑗

0)

.

5. Iterate steps 3 and 4 until convergence, |𝑦𝑗
𝑡+1 − 𝑦𝑗

𝑡| < δ.

3.5 Clustering by Local Density Maxima
Classic mean shift clusters points associated with the same
stationary point together. Effective mean shift considers only
effective neighbors and thus induces an approximation error as
computing local density maxima.

For compensating the approximation error, we further merge
registers with stationary points within a threshold distance 𝜀
into a cluster (𝜀 is very small in our experiments). As shown in
Fig. 7, the greater 𝜀, the larger cluster.

3.6 Relocation for Timing and Displacement
The previous steps in effective mean shift can be viewed as
seeking the locations of clusters. We further reassign registers
and relocate clusters for improving timing and displacement.

First, register reassignment can be reduced to the stable
matching problem. Gale and Shapley propose a stable matching
algorithm [19] to map from a given set of men to the other set of
women such that there exists no pair of man and woman who
prefer each other to their paired partners. Due to male-
optimality, in register reassignment, each register is modeled as
a man, while a cluster location is modeled as a woman; the
capacity of a cluster location equals the maximum allowable
cluster size. The preference is ranked in non-decreasing order of
displacement. Notably, the distance used during effective mean
shift is measured by Euclidean distance, the displacement
defined in register reassignment is the Manhattan distance from
the initial location of a register to the investigated cluster
location.

Second, after register reassignment, we relocate each cluster
to the median coordinate of its register members for minimizing
displacement and reducing timing degradation.

3.7 Complexity Analysis
Effective mean shift counts only effective neighbors by KNN and
selects a proper bandwidth for each register, thus expediting the
search of local density maxima.

Consider 𝑛 registers, 𝐾 effective neighbors for each register,
𝑇 iterations to convergence, and 𝐶 clusters generated. Shifting to
local density maxima can be done in 𝑂(𝑇𝐾𝑛) time, while
register reassignment and cluster relocation can be done in
𝑂(𝐶𝑛) time. Hence, effective mean shift is of complexity
𝑂(𝑇𝐾𝑛 + 𝐶𝑛), where 𝐾 ≪ 𝑛 and 𝐶 ≪ 𝑛.

3.8 Parallelization
As shown in Fig. 4, the computation for each register is
independent and thus highly parallelizable.

Fig. 8 illustrates parallel effective mean shift. First, identifying
effective neighbors by KNN and setting variable bandwidth for
each register can be computed in parallel. Second, shifting to
local density maximum is iteratively calculated in parallel, too.

4 EXPERIMENTAL RESULTS

4.1 Experimental Setting
Our effective mean shift algorithm was implemented in the C++
programming language and compiled by G++ 4.8.5; the program

Table 2. Analysis of Distinct Neighbors (K=140).

Circuit
of

Iterations
of Total Distinct

Neighbors
of Distinct Neighbors

per Iteration
Superblue16 213 158.25 0.74
Superblue18 315 158.09 0.50
Superblue10 533 156.13 0.29

Figure 8. Parallel effective mean shift (8 threads).

St
ar

t

Thread0

Thread1

Thread2

Thread3

Thread4

Thread5

Thread6

Thread7

Set Bandwidth

Set KNN

Reg. 8m+1

Reg. 8m+2

Reg. 8m+3

Reg. 8m+4

Reg. 8m+5

Reg. 8m+6

Reg. 8m+7

Reg. 8m

Reg. 8m+1

Reg. 8m+2

Reg. 8m+3

Reg. 8m+4

Reg. 8m+5

Reg. 8m+6

Reg. 8m+7

Reg. 8m

Shift to Local Maximum

(a) (b) (c)

Figure 7. Compensating the approximation error of
effective neighbors. (a) Small 𝜺. (b) Medium 𝜺. (c) Large 𝜺.

Session: New Advances in Placement ISPD ’19, April 14–17, 2019, San Francisco, CA, USA

15

was executed on a Linux workstation with an Intel Xeon 2.6 GHz
CPU and 256 GB memory. Experiments were conducted on
ICCAD-2015 CAD contest in incremental timing-driven
placement benchmark suite [20] as listed in Table 3, containing
768K~1932K cells with 101K~262K registers in each design. (The
circuit size for [20] is far greater than that in [12] (0.5K~17K
registers) and [13] (29k~50K registers).)

Our algorithm was evaluated by post-placement register
clustering of the experimental flow shown in Fig. 4. We started
with a timing-optimized placement and obtained the coordinates
of all registers as data points in effective mean shift algorithm.
After register clustering, we performed legalization and clock
tree synthesis by the state-of-the-art commercial tool [21]. We
analyzed the solution quality based on clock tree and timing
reports. Because the cell library in [20] does not include multi-bit
registers, we adopted a flexible template register library similar
to the setting used in prior work [4][6][7][8][9][10] as listed in
Table 4, where pseudo power is computed in a conservative way.

4.2 Comparison of Register Clustering Results
In the first experiment, we compared our results with non-
clustered designs and state-of-the-art weighted K-means
approach [11]. We reimplemented [11] in our flow. The
maximum allowable cluster size is 80 (same setting as [11]). The
maximum allowable displacement is 400 nm. For effective mean
shift, 𝐾 = 140 for KNN, convergence threshold δ = 0.0001 units,
cluster merging threshold 𝜀 = 5000 units. (In the benchmark
suite, 2000 unit length = 1 nm.)

Table 5 compares our register clustering approach with
weighted K-means (‘WK’) on cluster size distribution,
displacement (in unit length), and runtime (in second). ‘Para.’
and ‘Seq.’ indicates the runtime of the parallel (8 threads are
used in our experiment) and sequential version of effective mean
shift, respectively. Weighted K-means has 2.33X average
displacement of ours. We achieve 215X and 39X speedups for
parallel and sequential version, respectively. Fig. 9 shows the
partial layouts corresponding to the same region in superblue16
generated by non-clustering (initial timing-optimized
placement), weighted K-means, and effective mean shift, where
blue boxes indicate registers, and grey boxes indicate other cells.
It can be seen that weighted K-means tends to generate large
clusters and induce large displacement for outliers, thus
incurring significant placement disruption. In contrast, effective
mean shift delivers graceful register clustering. Fig. 10 shows full
layouts of superblue4, where red spots indicate registers.

In addition, Fig. 10(d) shows the clustering result if the
preference is computed based on the wirelength optimum site
for each register instead of its initial location during register
relocation (Section 3.6). The wirelength optimum site of each
register is the median coordinate of its all fanin and fanout gates.
Based on optimum sites, numerous registers migrate towards the
regions with many obstacles, thus possibly causing severe
congestions and incurring large timing degradation.

Table 6 compares the power and timing results after clock
tree synthesis for non-clustered designs (‘NC’), weighted K-
means (‘WK’), and our effective mean shift (‘Ours’). ‘WNS’
denotes worst negative slack, ‘TNS’ total negative slack, ‘Clock
Routed WL’ routed clock wirelength, ‘#Buffers’ the number of
clock buffers. ‘Clock Sink Power Ratio’ is computed based on
Table 4. Compared with the flow without register clustering, our
method achieves 75.42% reduction on clock routed wirelength,
45.97% decrease on clock buffer usage, and 25.52% savings on
clock sink power, maintains the same level of WNS and induces
only 1.95% timing degradation on total negative slack. TNS
reflects subsequent timing ECO efforts. The weighted K-means
flow suffers from 10.88% timing degradation but with 1~2% more
savings than ours on clock power.

(a) (b) (c)

Figure 9. Partial layouts (superblue16). (a) Non-clustered.
(b) Weighted K-means. (c) Effective mean shift.

Register
cluster

Single-bit
register

cell

Table 5. Comparison on Cluster Size, Displacement, and
Runtime with Weighted K-Means [11].

Circuit Method
Cluster Size Displacement Runtime (s)
Min Max Average Para. Seq.

superblue16
WK 34 80 56000.54 2370
Ours 1 55 22353.75 35 186

superblue18
WK 35 80 60843.50 6080
Ours 1 70 25792.54 25 138

superblue4
WK 34 80 48129.71 8470
Ours 1 56 19446.86 51 311

superblue5
WK 32 80 69453.46 3590
Ours 1 78 29747.90 28 131

superblue3
WK 28 80 54968.00 9098
Ours 1 79 25696.45 45 244

superblue1
WK 42 80 64158.15 5295
Ours 1 62 24456.03 40 200

superblue7
WK 39 80 54761.63 37692
Ours 1 79 26048.28 91 513

superblue10
WK 26 80 57643.75 27474
Ours 1 79 27914.53 75 412

Ratio WK/Ours

2.33 215.03 39.42

[1]

Table 3. Benchmark Statistics.
Circuit # of Cells # of Registers

superblue16 981,559 142,543
superblue18 768,068 101,758
superblue4 796,645 167,731
superblue5 1,086,888 110,941
superblue3 1,213,253 163,107
superblue1 1,209,716 137,560
superblue7 1,931,639 262,176
superblue10 1,876,130 231,747

Table 4. Pseudo Power of Multi-bit Register Library.
of Bits Normalized Pseudo Power per Bit

1 1.000
2~3 0.860
4~7 0.790
8~15 0.755

16~31 0.738
32~63 0.729
64~80 0.724

Session: New Advances in Placement ISPD ’19, April 14–17, 2019, San Francisco, CA, USA

16

4.3 Power and Timing Tradeoff
In the second experiment, we showed the power and timing
tradeoff by adjusting the bandwidth to the distance to different
𝑀-th neighbors. Fig. 11 shows the corresponding results of
superblue16, where timing is measured by TNS degradation, and
power is measured by total clock sink power ratio. The top-left
point indicates the register clustering result of weighted K-
means [11]. For effective mean shift, 𝑀 = 0 refers to the nearest
neighbor (every register itself), i.e., bandwidth = 0,
corresponding to non-clustered results. It can be seen that 𝑀 = 3
brings the best power and timing tradeoff.

4.4 Parallelization
In the third experiment, we compared the parallel version (multi-
threaded) with the sequential version (single threaded) of
effective mean shift. Fig. 12 demonstrates the speedups achieved
by effective mean shift on superblue18. It can be seen that
effective mean shift has superior efficiency and scalability.

5 CONCLUSIONS
In this paper, we propose effective mean shift to naturally form
clusters according to register distribution without placement
disruption. Effective mean shift fulfills the requirements to be a
good register clustering algorithm because it does not need a
prespecified number of clusters, is insensitive to initializations, is

𝑀 0 1 2 3 4 5
Max cluster size 1 30 35 55 78 98

Figure 11. Clock sink power vs. TNS degradation (superblue16).

M=0M=1M=2
M=3
M=4

M=5

[11]

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

0.72 0.77 0.82 0.87 0.92 0.97 1.02

TN
S

de
gr

ad
at

io
n

ra
tio

Clock sink pseudo power ratio

(a) (b)

(c) (d)

Figure 10. Full layouts (superblue4). (a) Non-clustered (b) Weighted K-means. (c) Effective mean shift. (d) Relocation using
optimum sites.

Figure 12. Speedups by parallelization (superblue18).

138

74

53
41 34 30 27 25

1 2 3 4 5 6 7 8
of threads

Runtime(s)

Session: New Advances in Placement ISPD ’19, April 14–17, 2019, San Francisco, CA, USA

17

robust to outliers, is tolerant of various register distributions, is
efficient and scalable, and balances clock power reduction
against timing degradation. Experimental results show that our
approach outperforms state-of-the-art work on power and
timing balancing; we deliver similar clock power reduction with
minor timing degradation. For efficiency and scalability, our
method achieves 39X (sequential version) and 215X (parallel
version) speedups. Future work includes the extension of
effective mean shift to global placement.

REFERENCES
[1] A. Ranjan. 2015. Micro-architectural exploration for low power design.

(November 2015). Semiconductor Engineering. Retrieved from
https://semiengineering.com/micro-architectural-exploration-for-low-power-
design/

[2] K. Brock. 2016. Six ways to exploit the advantages of finFETs. (November
2016.). Tech Design Forum. Retrieved from
http://www.techdesignforums.com/practice/technique/six-ways-to-exploit-
the-advantages-of-finfets/

[3] L. Rizzatti. 2015. Dynamic power estimation hits limits of SoC designs. (May
2015). Retrieved from
https://www.eetimes.com/author.asp?section_id=36&doc_id=1326542

[4] S. I. Ward, N. Viswanathan, N. Y. Zhou, C. C. N. Sze, Z. Li, C. J. Alpert, and D.
Z. Pan. 2013. Clock power minimization using structured latch templates and
decision tree induction. In Proc. Int’l Conf. on Computer-Aided Design
(ICCAD ’13). IEEE, Piscataway, NJ, USA, 599-606.

[5] D. A. Papa, C. J. Alpert, C. C. N. Sze, Z. Li, N. Viswanathan, G.-J. Nam, I. L.
Markov. 2011. Physical synthesis with clock-network optimization for large
systems on chips. IEEE Micro 31, 4 (July 2011), 51–62.

[6] M. P.-H. Lin, C. C. Hsu and Y.-T. Chang. 2011. Post-placement power
optimization with multi-bit flip-flops. IEEE Trans. on CAD of Integrated
Circuits and Systems (TCAD) 30, 12 (December 2011), 1870–1882.

[7] I. H.-R. Jiang, C.-L. Chang, and Y.-M. Yang. 2012. INTEGRA: Fast multibit
flip-flop clustering for clock power saving. IEEE Trans. on CAD of Integrated
Circuits and Systems (TCAD) 31, 2 (February 2012), 192–204. Also see in Proc.
Int’l Symp. on Physical Design (ISPD ’11). ACM, New York, NY, 115–121.

[8] S.-H. Wang, Y.-Y. Liang, T.-Y. Kuo, and W.-K. Mak. 2012. Power-driven flip-
flop merging and relocation. IEEE Trans. on CAD of Integrated Circuits and
Systems (TCAD) 31, 2 (February 2012), 180–191. Also see in Proc. Int’l Symp.
on Physical Design (ISPD ’11). ACM, New York, NY, 107–114.

[9] S. S.-Y. Liu, W.-T. Lo, C.-J. Lee, and H.-M. Chen. 2013. Agglomerative-based
flip-flop merging and relocation for signal wirelength and clock tree
optimization. ACM Trans. Design Automation Electronic Systems (TODAES) 18,
3, Article 40 (July 2013), 20 pages.

[10] C.-C. Tsai, Y. Shi, G. Luo, and I. H.-R. Jiang. 2013. FF-Bond: Multi-bit flip-flop
bonding at placement. In Proc. Int’l Symp. on Physical Design (ISPD ’13). ACM,
New York, NY, 147–153.

[11] G. Wu, Y. Xu, D. Wu, M. Ragupathy, Y.-Y. Mo, and C. Chu. 2016. Flip-flop
clustering by weighted K-means algorithm. 2016. In Proc. Design Automation
Conf. (DAC ’16). ACM, New York, NY, Article 82, 6 pages.

[12] A. B. Kahng, J. Li, and L. Wang. 2016. Improved flop tray-based design
implementation for power reduction. In Proc. Int’l Conf. on Computer-Aided
Design (ICCAD ’16). ACM, New York, NY, Article 20, 8 pages.

[13] I. Seitanidis, G. Dimitrakopoulos, P. M. Mattheakis, L. Masse-Navette, D.
Chinnery. 2018. Timing-driven and placement-aware multi-bit register
composition. IEEE Trans. on CAD of Integrated Circuits and Systems (TCAD),
early access. Also see in Proc. Design Automation Conf. (DAC ’17). ACM, New
York, NY, Article 56, 6 pages.

[14] S. P. Lloyd. 1982. Least square quantization in PCM. IEEE Trans. Information
Theory 28, 2 (March 1982), 129–137.

[15] K. Fukunaga and L.D. Hostetler. 1975. The estimation of the gradient of a
density function, with applications in pattern recognition. IEEE Trans.
Information Theory 21 (January 1975), 32–40.

[16] Y. Cheng. 1995. Mean shift, mode seeking, and clustering. IEEE Trans. Pattern
Analysis Machine Intelligence (TPAMI) 17, 8 (August 1995), 790–799.

[17] D. Comaniciu and P. Meer. 2002. Mean shift: A robust approach toward
feature space analysis. IEEE Trans. Pattern Analysis Machine Intelligence
(TPAMI) 24, 5 (May 2002), 603–619.

[18] D. Comaniciu, V. Ramesh, and P. Meer. 2001. The variable bandwidth mean
shift and data-driven scale selection. In Proc. Int’l Conf. on Computer Vision
(ICCV ’01). IEEE, Piscataway, NJ, USA, 438-445.

[19] D. Gale and L. S. Shapley. 1962. College admissions and the stability of
marriage. American Mathematical Monthly 69 (1962), 9–14.

[20] M.-C. Kim, J. Hu, J. Li, and N. Viswanathan. 2015. ICCAD-2015 CAD contest
in incremental timing-driven placement and benchmark suite. In Proc. Int’l
Conf. on Computer-Aided Design (ICCAD ’15). IEEE, Piscataway, NJ, USA,
921–926.

[21] Innovus, Cadence, Inc.

Table 6. Comparison on Timing and Power with Weighted K-Means (WK) [11] and Non-Clustered Design (NC).

Circuit Method
Timing Power

WNS TNS (ns) TNS Degradation Ratio Clock Routed WL (um) Ratio #Buffers Ratio Clock Sink Power Ratio

superblue16
NC -6.2 -1532.0 0.00% 934,654 100.00% 3,414 100.00% 100.00%
WK -6.6 -2120.9 -38.44% 196,543 21.03% 1,872 54.83% 72.47%
Ours -6.2 -1629.8 -6.38% 214,560 22.96% 1,873 54.86% 74.86%

superblue18
NC -9.1 -5148.3 0.00% 629,463 100.00% 2,449 100.00% 100.00%
WK -9.4 -5834.8 -13.33% 143,471 22.79% 1,314 53.65% 72.47%
Ours -9.1 -5250.0 -1.98% 144,009 22.88% 1,228 50.14% 74.32%

superblue4
NC -9.7 -15669.9 0.00% 1,017,709 100.00% 4,303 100.00% 100.00%
WK -10.1 -16738.6 -6.82% 214,560 21.08% 2,124 49.36% 72.47%
Ours -9.9 -15830.8 -1.03% 234,966 23.09% 2,072 48.15% 74.91%

superblue5
NC -30.2 -19866.8 0.00% 928,619 100.00% 3,626 100.00% 100.00%
WK -32.3 -20607.3 -3.73% 273,496 29.45% 2,251 62.08% 72.51%
Ours -30.3 -19898.6 -0.16% 291,267 31.37% 2,355 64.95% 74.16%

superblue3
NC -18.9 -7892.9 0.00% 1,047,502 100.00% 4,251 100.00% 100.00%
WK -19.7 -8584.5 -8.76% 266,706 25.46% 2,054 48.32% 72.48%
Ours -18.9 -8106.1 -2.70% 262,588 25.07% 2,133 50.18% 74.14%

superblue1
NC -10.2 -6778.5 0.00% 1,047,502 100.00% 3,759 100.00% 100.00%
WK -10.5 -7825.5 -15.45% 262,261 25.04% 2,052 54.59% 72.47%
Ours -10.2 -7334.7 -8.21% 255,708 24.41% 2,104 55.97% 74.87%

superblue7
NC -19.4 -12531.2 0.00% 1,702,650 100.00% 6,482 100.00% 100.00%
WK -20.9 -13591.3 -8.46% 362,256 21.28% 3,427 52.87% 72.48%
Ours -19.2 -12757.0 -1.80% 379,577 22.29% 3,341 51.54% 74.31%

superblue10
NC -48.7 -151000.0 0.00% 1,660,396 100.00% 6,189 100.00% 100.00%
WK -42.7 -139000.0 7.95% 379,246 22.84% 3,210 51.87% 72.48%
Ours -42.3 -141000.0 6.62% 408,500 24.60% 3,495 56.47% 74.25%

Average
NC

0.00%

100.00%

100.00% 100.00%

WK

-10.88%

23.62%

53.45% 72.48%
Ours

-1.95%

24.58% 54.03% 74.48%

[2]

Session: New Advances in Placement ISPD ’19, April 14–17, 2019, San Francisco, CA, USA

18

wayne

wayne

wayne

wayne

wayne

wayne

wayne

wayne

wayne

