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ABSTRACT 
As the wide adoption of FinFET technology in mass production, 
dynamic power becomes the bottleneck to achieving low power. 
Therefore, clock power reduction is crucial in modern IC design. 
Register clustering can effectively save clock power because of 
significantly reducing the number of clock sinks and register pin 
capacitance, clock routed wirelength, and the number of clock 
buffers. In this paper, we propose effective mean shift to 
naturally form clusters according to register distribution without 
placement disruption. Effective mean shift fulfills the 
requirements to be a good register clustering algorithm because 
it needs no prespecified number of clusters, is insensitive to 
initializations, is robust to outliers, is tolerant of various register 
distributions, is efficient and scalable, and balances clock power 
reduction against timing degradation. Experimental results show 
that our approach outperforms state-of-the-art work on power 
and timing balancing, as well as efficiency and scalability. 
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1 INTRODUCTION 
The wide adoption of FinFET technology at advanced nodes 
results in a dramatic drop in leakage power; therefore, dynamic 
power is now the bottleneck to achieving low power in modern 
IC design [1][2][3]. Clock power has been considered the 
dominant contributor to dynamic power because of its high 
toggle rate and large capacitive loading. 

In addition to voltage scaling and clock gating, register 
clustering is an effective technique to save clock power. Register 
clustering, which gathers registers1 into clusters, reduces the 
switching capacitance in a clock network in the following 
aspects  (see Fig. 1): 1) The clock sink capacitance (in terms of 
register capacitance) is lowered because the number of clock 
sinks is greatly reduced. Furthermore, by sharing clocking 
circuitry within the cell, a multi-bit register has a smaller pin 
capacitance at the clock sinks than separate single-bit registers. 2) 
The clock network capacitance (in terms of clock routed 

1A register generally means a sequential element, i.e., a flip-flop or a latch. 
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Figure 1. Register clustering reduces the switching 
capacitance in a clock network in all aspects. 
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wirelength and clock buffers) is lessened because the depth of 
clock tree becomes shallow.  

Recently, studies have extensively investigated register 
clustering, e.g., [5][6][7][8][9][10][11][12][13]. Depending on the 
available bit numbers, there exist two register cluster designs 
presented in literature: 1) Rigid cell [6][7][8][9][10][11][12][13], 
i.e., discrete bits. 2) Flexible template (structured latch template) 
[4][5], i.e., each template covers a range of bits instead of a 
specific number.  

Most of existing works perform either in-placement or post-
placement register clustering, and their solutions fall into two 
main categories: clique partitioning and K-means clustering. The 
clique partitioning approach first constructs a compatibility 
graph (recording the clustering compatibility between any two 
registers based on their timing feasible regions) and then 
extracts maximal cliques to form multi-bit registers without 
timing degradation [6][7][8][9][10][13]. The most up-to-date 
results were reported by Seitanidis et al. in [13], who 
enumerated all valid multi-bit registers from these cliques and 
then formulated an integer linear program (ILP) to generate as 
few feasible multi-bit registers as possible.  

On the other hand, the K-means approach relaxes timing 
constraints to maximum displacement constraints, trying to 
minimize the impact on timing. K-means, however, is sensitive 
to initializations and outliers (distant from other registers) [14]; 
it starts with a prespecified number of clusters and initial cluster 
centers (seeds), iteratively assigns registers to nearest clusters, 
and finally converges to a local minimum of within-cluster total 
displacement [5][11][12]. Very recently, for minimizing the 
number of generated clusters, Wu et al. in [11] proposed 
weighted K-means, introducing a cluster size balancing weight 
into displacement cost. Because they intended to form large 
clusters (nearly maximum allowable bits of a register cell) and 
possibly moved outliers away, significant timing degradation 
cannot be avoided. Moreover, adding weights cannot guarantee 
elimination of oversized clusters; thus, additional processes were 
performed to fix over-displacement on outliers and control size 
overflows. Later, Kahng et al. in [12] adopted capacitated K-
means and ILP to form feasible sized clusters. Nevertheless, due 
to high complexities, clique enumeration and ILP may not be 
applicable for large multi-bit register cells or large-scale designs. 

Consider a timing-optimized placement as the input. Creating 
large clusters or dragging outliers far away inevitably causes 
large disruption to placement thus incurring significant timing 
degradation. The more timing degradations, the more timing 
ECO efforts. Besides, once registers are clustered (even few), we 
can save clock power. Based on these investigations, a good 
register clustering algorithm is desired 1) to require no 
prespecified number of clusters, 2) to be insensitive to 
initializations, 3) to be robust to outliers, 4) to be tolerant of 
various register distributions, 5) to be efficient and scalable, and 
6) to balance power and timing. 

Therefore, in this paper, we propose effective mean shift to 
perform graceful register clustering for reducing clock power 
while minimizing timing degradation (see Fig. 2). Effective mean 

shift augments classic mean shift with special treatments for 
register clustering to attain these goals. 

Conceptually, clusters are expected to reside in dense regions 
of registers. Our idea is to direct registers towards their nearest 
densest spots to form clusters naturally. 

In our effective mean shift algorithm, the register distribution 
is first mapped to a density surface; dense regions form hills. 
Each register climbs up (shifts) to the nearest peak in a specified 
search window. For register clustering, the search window 
(bandwidth) reflects timing criticality and local density/sparsity. 
Furthermore, we propose to consider effective neighbors via k-
nearest neighbors (KNN) during iterative shift vector 
computation for efficiency and stability. Subsequently, we 
reassign registers and relocate clusters to further improve 
displacement (for timing) and refine cluster count (for power). 

Effective mean shift fulfills the aforementioned requirements 
for being a good register clustering algorithm. 

1) It requires no prespecified number of clusters. It exploits 
the density of registers to generate a reasonable number of 
clusters naturally.  

2) It is insensitive to initializations. Actually, no initial seeds 
are needed. 

3) It is robust to outliers. Our effective neighbor consideration 
and bandwidth setting prevent outliers in sparse regions from 
over-displacement. 

4) It is tolerant of various register distributions. According to 
local density and sparsity, our clustering can tolerate uneven 
register distribution. 

5) It is efficient and scalable. Our KNN and bandwidth setting 
expedites shift vector computation for each register, and our 
algorithm is highly parallelizable. 

6) It balances power reduction against timing degradation 
because of graceful register clustering. 

Our approach is evaluated by 2015 CAD Contest in 
incremental timing-driven placement benchmark suite [20], 
containing 768K~1932K cells with 101K~262K registers. Our 
approach is compared with physical design flows without 
performing register clustering and with the weighted K-means 
clustering [11]. Compared with the flow without register 
clustering, our method has achieved 75% reduction on clock 
routed wirelength, 46% decrease on clock buffer usage, and 26% 
savings on clock sink power with less than 2% timing 
degradation (in terms of total negative slack). The weighted K-
means flow suffers from 11% timing degradation but with 1~2% 
more savings than ours on clock power. Our respective 

 
Figure 2. Graceful register clustering. 
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maximum register displacement and total register displacement 
is 19% and 43% of weighted K-means. For efficiency and 
scalability, our method achieves 39X (single-threaded) and 215X 
(multi-threaded) speedups compared with weighted K-means. 

The remainder of this paper is organized as follows. Section 2 
introduces preliminaries about the classic mean shift algorithm 
and describes the register clustering design methodology 
adopted in this paper. Section 3 details register clustering based 
on our effective mean shift algorithm. Section 4 shows 
experimental results. Finally, Section 5 concludes this work.   

2 PRELIMINARIES 

2.1 Classic Mean Shift Algorithm  
Classic mean shift was introduced by Fukunaga and Hostetler 
[15], generalized by Cheng [16], and applied to cluster analysis 
in various fields, e.g., Computer Vision [17]. 

First, it views the data points are samples from a probability 
density function. Placing a kernel on each data point (Gaussian 
kernel is widely used [16][17]) and adding all of the individual 
kernels up generates a density surface (see Fig. 3). Considering a 
kernel 𝑘 of bandwidth ℎ, the kernel density estimator for a 𝑑-
dimensional data point 𝑥 is 

𝑓(𝑥) =
1

𝑛ℎ𝑑
∑ 𝑘 (

𝑥−𝑥𝑖

ℎ
)𝑛

𝑖=1 .  (1) 

If dense regions are present, then they correspond to local 
maxima of the density surface, and clusters associated with these 
local maxima can be identified. Classic mean shift iteratively 
shifts each data point uphill until it reaches the nearest peak of 
density surface within the bandwidth ℎ. 

The algorithm starts with making a copy of the original data 
points and freezing the original ones. The copied points are 
iteratively shifted against the original frozen points. The shift 𝑚 
of each point is computed by performing gradient ascent on the 
density function until it converges to a stationary point. 

𝑚(𝑥) =
∑ 𝑥𝑖𝑔(‖

𝑥−𝑥𝑖
ℎ

‖
2
)𝑛

𝑖=1

∑ 𝑔(‖
𝑥−𝑥𝑖
ℎ

‖
2
)𝑛

𝑖=1

− 𝑥,  (2) 

where Gaussian kernel function 𝑘(𝑥) = 𝜅(‖𝑥‖2), ‖𝑥‖2  means 
squared Euclidean distance, and gradient 𝑔(𝑥) = −𝜅′(𝑥). 𝑚(𝑥) 
points towards the direction of maximum increase in density. 
Finally, all points associated with the same stationary point 

belong to the same cluster. 
The main disadvantage of classic mean shift is its inefficiency; 

its time complexity is of 𝑂(𝑇𝑛2), where 𝑇 is the number of 
iterations, and 𝑛 is the number of data points. 

Classic mean shift shares the same kernel bandwidth ℎ for all 
data points. Depending on the kernel bandwidth parameter used, 
the resultant density function and end clustering will vary. The 
bandwidth value is chosen based on domain-specific knowledge. 

2.2 Problem Formulation and Methodology 
In register clustering, data points represent registers in a given 
placement (i.e., a two-dimensional plane, 𝑑 = 2). The induced 
register displacement can be approximated as the Manhattan 
distance between each register and the cluster center. 

The inputs of the register clustering problem are a timing-
optimized placement, multi-bit register library, and a user-
defined maximum allowable displacement. Then, for saving clock 
power without placement/timing disruption, our goal is to 
minimize the total sum of register displacement as well as the 
number of clusters, while satisfying the cluster size constraint 
and maximum displacement constraints. The cluster size 
constraint is a given constant value according to the register 
library, while the maximum displacement for each register is set 
according to its timing criticality and the given maximum 
allowable displacement. 

It can be seen that the classic mean shift algorithm cannot be 
directly applied due to the extra constraints and the efficiency 
requirement. We shall detail how we handle them by our 
effective mean shift in Section 3. 

Fig. 4 shows the register clustering methodology adopted in 
this paper. Register clustering can be performed either post-
placement or in-placement (if incremental placement is allowed). 

3 EFFECTIVE MEAN SHIFT ALGORITHM  

3.1 Overview 
In this section, we propose effective mean shift to perform 
graceful register clustering for reducing clock power while 
minimizing timing degradation. We augment classic mean shift 
with special treatments for register clustering.  

Effective mean shift naturally forms clusters according to 
register distribution without placement disruption. First, the 

 
(a)    (b) 

Figure 3. Classic mean shift. (a) Density surface. (b) Data 
distribution with density contour. 
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Figure 4. Register clustering methodology. 
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register distribution is mapped to a density surface; dense 
regions form hills. Each register climbs up (shifts) to the nearest 
peak in a specified search window. 

The search window (bandwidth) of each register varies and 
reflects its timing criticality and local density/sparsity. 
Furthermore, for efficiency and stability, we propose to consider 
effective neighbors via k-nearest neighbors (KNN) during 
iterative shift vector computation. Subsequently, we reassign 
registers and relocate clusters to further improve displacement 
(for timing) and refine cluster count (for power). Table 1 
summarizes classic, adaptive, and effective mean shift. 

3.2 Variable Bandwidth Selection  
The kernel bandwidth parameter affects the resultant density 
function and clustering. As an extreme case, we use extremely 
tall skinny kernels (i.e., an extremely small bandwidth). The 
resultant density surface has a peak at each point, and thus each 
point forms its own cluster. In contrast, if we use an extremely 
short fat kernels (i.e., an extremely large bandwidth). The 
resultant wide smooth density surface has only one peak where 
all points climb up, forming one cluster. Kernels in between 
these two extremes lead to nicer clustering results. 

Classic mean shift uses a fixed kernel bandwidth for all points. 
Nevertheless, the kernel bandwidth confines the search window 
of each point. Thus, for register clustering, each register is 
desired to have a variable bandwidth to reflect its timing 
criticality and local distribution. Then, the density function can 
be defined based on [18]: 

𝑓(𝑥) =
1

𝑛
∑

1

ℎ𝑖
𝑑 𝑘 (

𝑥−𝑥𝑖

ℎ𝑖
)𝑛

𝑖=1 .  (3) 

The shift vector becomes: 

   𝑚(𝑥) =
∑

𝑥𝑖

ℎ𝑖
𝑑+2 𝑔(‖

𝑥−𝑥𝑖
ℎ𝑖

‖
2

)𝑛
𝑖=1

∑
1

ℎ𝑖
𝑑+2𝑔(‖

𝑥−𝑥𝑖
ℎ𝑖

‖
2

)𝑛
𝑖=1

− 𝑥. (4) 

For a register lying in dense regions, we select a small 
bandwidth, thus identifying the local maximum quickly in a 
narrow neighborhood and avoiding a large cluster size. Hence, 
considering local distribution, bandwidth is first set to as the 
distance to its M-th nearest neighbor (see Fig. 5). Furthermore, 
considering the timing criticality and maximum allowable 
displacement, the bandwidth of register 𝑖 is 

ℎ𝑖 = min(ℎmax, 𝛼‖𝑥𝑖 − 𝑥𝑖,𝑀‖),  (5) 

where ℎmax  denotes the maximum allowable displacement, 
‖𝑥𝑖 − 𝑥𝑖,𝑀‖ means the Euclidean distance between register 𝑖 and 
its M-th nearest neighbor (𝑥𝑖,0 = 𝑥𝑖), and 𝛼 is a timing criticality 
coefficient; 𝛼 → 0 for the most critical register (i.e., a very tall 
and skinny kernel). 

3.3 Identifying Effective Neighbors  
Classic mean shift considers all original data points during shift 
vector computation (𝑛 is usually large in practice, 101K~262K in 
our experiments). 

However, the points that correspond to the tails of the 
underlying density function receive small weights in Equations 
(3) and (4), and thus they are almost automatically discarded. 
Moreover, we do not expect registers to travel far away (for 
minimizing disturbance to timing and placement), and try to 
avoid oversized clusters. Thus, we can ignore distant registers. 

For achieving this goal, we identify effective neighbors via 
KNN, 𝐾 ≪ 𝑛 . In addition, registers belonging to KNN of a 
register but beyond the maximum allowable displacement are 
also excluded (see Fig. 6). Hence, for a register at 𝑥𝑗, we consider 
the following set of registers during the computation: 

𝑖 ∈ 𝐾𝑁𝑁(𝑥𝑗) − {𝑥𝑗,𝑚|‖𝑥𝑗 − 𝑥𝑗,𝑚‖ > ℎmax, 𝑚 ≤ 𝐾} 

= 𝐾𝑁𝑁′(𝑥𝑗).    (6) 

The density function can be rewritten as: 

𝑓(𝑥) =
1

𝑛
∑

1

ℎ𝑖
𝑑 𝑘 (

𝑥−𝑥𝑖

ℎ𝑖
) 

𝑖∈𝐾𝑁𝑁′(𝑥) .  (7) 

The shift vector becomes: 

  𝑚(𝑥) =
∑

𝑥𝑖

ℎ𝑖
𝑑+2𝑔(‖

𝑥−𝑥𝑖
ℎ𝑖

‖
2

) 
𝑖∈𝐾𝑁𝑁′(𝑥)

∑
1

ℎ𝑖
𝑑+2𝑔(‖

𝑥−𝑥𝑖
ℎ𝑖

‖
2

)𝑖∈𝐾𝑁𝑁′(𝑥)

− 𝑥.  (8) 

Although the idea of effective neighbors greatly improves the 
efficiency of shift vector computation, when the number of 
iterations to convergence is large, iteratively updating effective 
neighbors may still be computation intensive. 

Table 1. Comparison of Classic, Adaptive, Effective Mean Shift. 

 

Classic Mean Shift
Adaptive Mean Shift
(Variable Bandwidth) Effective Mean Shift

Density estimator

Shift point

1. , Gaussian kernel 2. 3.

 
Figure 5. Bandwidth selection based on the distance to M-th 
nearest neighbor (𝑴 = 𝟐). 
 

ℎ𝑖

ℎ𝑗

register

 
Figure 6. Effective neighbors identified by KNN (𝑲 = 𝟏𝟐). 
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Hence, we analyze members of effective neighbors. 
Compared with the initial set of effective neighbors, distinct 
neighbors that appear throughout the entire clustering process 
are few. For the sample circuits, we randomly monitor 100 
registers and update their effective neighbors via KNN as 𝐾 =

140 at every iteration. Table 2 lists the statistics on average total 
distinct neighbors. Since neighbors barely change, effective 
neighbors can be identified only once (at the beginning).  

3.4 Shifting to Local Density Maxima 
After identifying effective neighbors and selecting a proper 
bandwidth for each register, we construct the density surface. 
We make a copy of the original register coordinates and freezing 
the original ones. The copied coordinates {𝑦𝑗

𝑡} (𝑡 denotes the 
iteration index) are iteratively shifted against the original frozen 
points {𝑥𝑗}. Hence, each register undergoes the following steps 
to seek the local density maximum.  

1. Set the initial coordinates, 𝑦𝑗
0 = 𝑥𝑗 , 𝑗 = 1. . 𝑛. 

2. Identify effective neighbors, 𝐾𝑁𝑁′(𝑦𝑗
0); set bandwidth ℎ𝑗 . 

3. Compute the mean shift vector 𝑚(𝑦𝑗
𝑡) by Equation (8). 

4. Shift each register, 

𝑦𝑗
𝑡+1 = 𝑦𝑗

𝑡 + 𝑚(𝑦𝑗
𝑡) =

∑
𝑥𝑖

ℎ𝑖
𝑑+2𝑔(‖

𝑦𝑗
𝑡−𝑥𝑖

ℎ𝑖
‖

2

) 
𝑖∈𝐾𝑁𝑁′(𝑦𝑗

0)

∑
1

ℎ𝑖
𝑑+2𝑔(‖

𝑦𝑗
𝑡−𝑥𝑖

ℎ𝑖
‖

2

)
𝑖∈𝐾𝑁𝑁′(𝑦𝑗

0)

. 

5. Iterate steps 3 and 4 until convergence, |𝑦𝑗
𝑡+1 − 𝑦𝑗

𝑡| < δ. 

3.5 Clustering by Local Density Maxima  
Classic mean shift clusters points associated with the same 
stationary point together. Effective mean shift considers only 
effective neighbors and thus induces an approximation error as 
computing local density maxima. 

For compensating the approximation error, we further merge 
registers with stationary points within a threshold distance 𝜀 
into a cluster (𝜀 is very small in our experiments). As shown in 
Fig. 7, the greater 𝜀, the larger cluster.  

3.6 Relocation for Timing and Displacement   
The previous steps in effective mean shift can be viewed as 
seeking the locations of clusters. We further reassign registers 
and relocate clusters for improving timing and displacement.  

First, register reassignment can be reduced to the stable 
matching problem. Gale and Shapley propose a stable matching 
algorithm [19] to map from a given set of men to the other set of 
women such that there exists no pair of man and woman who 
prefer each other to their paired partners. Due to male-
optimality, in register reassignment, each register is modeled as 
a man, while a cluster location is modeled as a woman; the 
capacity of a cluster location equals the maximum allowable 
cluster size. The preference is ranked in non-decreasing order of 
displacement. Notably, the distance used during effective mean 
shift is measured by Euclidean distance, the displacement 
defined in register reassignment is the Manhattan distance from 
the initial location of a register to the investigated cluster 
location. 

Second, after register reassignment, we relocate each cluster 
to the median coordinate of its register members for minimizing 
displacement and reducing timing degradation. 

3.7 Complexity Analysis 
Effective mean shift counts only effective neighbors by KNN and 
selects a proper bandwidth for each register, thus expediting the 
search of local density maxima. 

Consider 𝑛 registers, 𝐾 effective neighbors for each register, 
𝑇 iterations to convergence, and 𝐶 clusters generated. Shifting to 
local density maxima can be done in 𝑂(𝑇𝐾𝑛)  time, while 
register reassignment and cluster relocation can be done in 
𝑂(𝐶𝑛)  time. Hence, effective mean shift is of complexity 
𝑂(𝑇𝐾𝑛 + 𝐶𝑛), where 𝐾 ≪ 𝑛 and 𝐶 ≪ 𝑛. 

3.8 Parallelization  
As shown in Fig. 4, the computation for each register is 
independent and thus highly parallelizable. 

Fig. 8 illustrates parallel effective mean shift. First, identifying 
effective neighbors by KNN and setting variable bandwidth for 
each register can be computed in parallel. Second, shifting to 
local density maximum is iteratively calculated in parallel, too. 

4 EXPERIMENTAL RESULTS   

4.1 Experimental Setting 
Our effective mean shift algorithm was implemented in the C++ 
programming language and compiled by G++ 4.8.5; the program 

Table 2. Analysis of Distinct Neighbors (K=140). 

Circuit 
# of 

Iterations 
# of Total Distinct 

Neighbors 
# of Distinct Neighbors 

per Iteration 
Superblue16 213 158.25 0.74 
Superblue18 315 158.09 0.50 
Superblue10 533 156.13 0.29 

 

 
Figure 8.  Parallel effective mean shift (8 threads). 
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Figure 7. Compensating the approximation error of 
effective neighbors. (a) Small 𝜺. (b) Medium 𝜺. (c) Large 𝜺. 
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was executed on a Linux workstation with an Intel Xeon 2.6 GHz 
CPU and 256 GB memory. Experiments were conducted on 
ICCAD-2015 CAD contest in incremental timing-driven 
placement benchmark suite [20] as listed in Table 3, containing 
768K~1932K cells with 101K~262K registers in each design. (The 
circuit size for [20] is far greater than that in [12] (0.5K~17K 
registers) and [13] (29k~50K registers).) 

Our algorithm was evaluated by post-placement register 
clustering of the experimental flow shown in Fig. 4. We started 
with a timing-optimized placement and obtained the coordinates 
of all registers as data points in effective mean shift algorithm. 
After register clustering, we performed legalization and clock 
tree synthesis by the state-of-the-art commercial tool [21]. We 
analyzed the solution quality based on clock tree and timing 
reports. Because the cell library in [20] does not include multi-bit 
registers, we adopted a flexible template register library similar 
to the setting used in prior work [4][6][7][8][9][10] as listed in 
Table 4, where pseudo power is computed in a conservative way. 

4.2 Comparison of Register Clustering Results   
In the first experiment, we compared our results with non-
clustered designs and state-of-the-art weighted K-means 
approach [11]. We reimplemented [11] in our flow. The 
maximum allowable cluster size is 80 (same setting as [11]). The 
maximum allowable displacement is 400 nm. For effective mean 
shift, 𝐾 = 140 for KNN, convergence threshold δ = 0.0001 units, 
cluster merging threshold 𝜀 = 5000 units. (In the benchmark 
suite, 2000 unit length = 1 nm.) 

Table 5 compares our register clustering approach with 
weighted K-means (‘WK’) on cluster size distribution, 
displacement (in unit length), and runtime (in second). ‘Para.’ 
and ‘Seq.’ indicates the runtime of the parallel (8 threads are 
used in our experiment) and sequential version of effective mean 
shift, respectively. Weighted K-means has 2.33X average 
displacement of ours. We achieve 215X and 39X speedups for 
parallel and sequential version, respectively. Fig. 9 shows the 
partial layouts corresponding to the same region in superblue16 
generated by non-clustering (initial timing-optimized 
placement), weighted K-means, and effective mean shift, where 
blue boxes indicate registers, and grey boxes indicate other cells. 
It can be seen that weighted K-means tends to generate large 
clusters and induce large displacement for outliers, thus 
incurring significant placement disruption. In contrast, effective 
mean shift delivers graceful register clustering. Fig. 10 shows full 
layouts of superblue4, where red spots indicate registers. 

In addition, Fig. 10(d) shows the clustering result if the 
preference is computed based on the wirelength optimum site 
for each register instead of its initial location during register 
relocation (Section 3.6). The wirelength optimum site of each 
register is the median coordinate of its all fanin and fanout gates. 
Based on optimum sites, numerous registers migrate towards the 
regions with many obstacles, thus possibly causing severe 
congestions and incurring large timing degradation. 

Table 6 compares the power and timing results after clock 
tree synthesis for non-clustered designs (‘NC’), weighted K-
means (‘WK’), and our effective mean shift (‘Ours’). ‘WNS’ 
denotes worst negative slack, ‘TNS’ total negative slack, ‘Clock 
Routed WL’ routed clock wirelength, ‘#Buffers’ the number of 
clock buffers. ‘Clock Sink Power Ratio’ is computed based on 
Table 4. Compared with the flow without register clustering, our 
method achieves 75.42% reduction on clock routed wirelength, 
45.97% decrease on clock buffer usage, and 25.52% savings on 
clock sink power, maintains the same level of WNS and induces 
only 1.95% timing degradation on total negative slack. TNS 
reflects subsequent timing ECO efforts. The weighted K-means 
flow suffers from 10.88% timing degradation but with 1~2% more 
savings than ours on clock power. 

 
(a)                                      (b)                                      (c) 

Figure 9. Partial layouts (superblue16). (a) Non-clustered. 
(b) Weighted K-means. (c) Effective mean shift.  
 

Register 
cluster

Single-bit 
register

cell

Table 5. Comparison on Cluster Size, Displacement, and 
Runtime with Weighted K-Means [11]. 

Circuit Method 
Cluster Size Displacement Runtime (s) 
Min Max Average Para. Seq. 

superblue16 
WK 34 80 56000.54 2370 
Ours 1 55 22353.75 35 186 

superblue18 
WK 35 80 60843.50 6080 
Ours 1 70 25792.54 25 138 

superblue4 
WK 34 80 48129.71 8470 
Ours 1 56 19446.86 51 311 

superblue5 
WK 32 80 69453.46 3590 
Ours 1 78 29747.90 28 131 

superblue3 
WK 28 80 54968.00 9098 
Ours 1 79 25696.45 45 244 

superblue1 
WK 42 80 64158.15 5295 
Ours 1 62 24456.03 40 200 

superblue7 
WK 39 80 54761.63 37692 
Ours 1 79 26048.28 91 513 

superblue10 
WK 26 80 57643.75 27474 
Ours 1 79 27914.53 75 412 

Ratio WK/Ours 
  

2.33 215.03 39.42 

 

[1]  
 

Table 3. Benchmark Statistics. 
Circuit # of Cells # of Registers 

superblue16 981,559 142,543 
superblue18 768,068 101,758 
superblue4 796,645 167,731 
superblue5 1,086,888 110,941 
superblue3 1,213,253 163,107 
superblue1 1,209,716 137,560 
superblue7 1,931,639 262,176 
superblue10 1,876,130 231,747 

Table 4. Pseudo Power of Multi-bit Register Library. 
# of Bits  Normalized Pseudo Power per Bit 

1  1.000  
2~3  0.860  
4~7 0.790  
8~15 0.755  

16~31 0.738  
32~63 0.729  
64~80 0.724  
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4.3 Power and Timing Tradeoff  
In the second experiment, we showed the power and timing 
tradeoff by adjusting the bandwidth to the distance to different  
𝑀-th neighbors. Fig. 11 shows the corresponding results of 
superblue16, where timing is measured by TNS degradation, and 
power is measured by total clock sink power ratio. The top-left 
point indicates the register clustering result of weighted K-
means [11]. For effective mean shift, 𝑀 = 0 refers to the nearest 
neighbor (every register itself), i.e., bandwidth = 0, 
corresponding to non-clustered results. It can be seen that 𝑀 = 3 
brings the best power and timing tradeoff. 

4.4 Parallelization  
In the third experiment, we compared the parallel version (multi-
threaded) with the sequential version (single threaded) of 
effective mean shift. Fig. 12 demonstrates the speedups achieved 
by effective mean shift on superblue18. It can be seen that 
effective mean shift has superior efficiency and scalability. 

5 CONCLUSIONS  
In this paper, we propose effective mean shift to naturally form 
clusters according to register distribution without placement 
disruption. Effective mean shift fulfills the requirements to be a 
good register clustering algorithm because it does not need a 
prespecified number of clusters, is insensitive to initializations, is 

𝑀 0 1 2 3 4 5 
Max cluster size 1 30 35 55 78 98 

 
Figure 11. Clock sink power vs. TNS degradation (superblue16). 
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Figure 10. Full layouts (superblue4). (a) Non-clustered (b) Weighted K-means. (c) Effective mean shift. (d) Relocation using 
optimum sites. 
 

 
Figure 12. Speedups by parallelization (superblue18). 
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robust to outliers, is tolerant of various register distributions, is 
efficient and scalable, and balances clock power reduction 
against timing degradation. Experimental results show that our 
approach outperforms state-of-the-art work on power and 
timing balancing; we deliver similar clock power reduction with 
minor timing degradation. For efficiency and scalability, our 
method achieves 39X (sequential version) and 215X (parallel 
version) speedups. Future work includes the extension of 
effective mean shift to global placement. 
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Table 6. Comparison on Timing and Power with Weighted K-Means (WK) [11] and Non-Clustered Design (NC). 

Circuit Method 
Timing Power 

WNS TNS (ns) TNS Degradation Ratio Clock Routed WL (um) Ratio #Buffers Ratio Clock Sink Power Ratio 

superblue16 
NC -6.2 -1532.0 0.00% 934,654 100.00% 3,414 100.00% 100.00% 
WK -6.6 -2120.9 -38.44% 196,543 21.03% 1,872 54.83% 72.47% 
Ours -6.2 -1629.8 -6.38% 214,560 22.96% 1,873 54.86% 74.86% 

superblue18 
NC -9.1 -5148.3 0.00% 629,463 100.00% 2,449 100.00% 100.00% 
WK -9.4 -5834.8 -13.33% 143,471 22.79% 1,314 53.65% 72.47% 
Ours -9.1 -5250.0 -1.98% 144,009 22.88% 1,228 50.14% 74.32% 

superblue4 
NC -9.7 -15669.9 0.00% 1,017,709 100.00% 4,303 100.00% 100.00% 
WK -10.1 -16738.6 -6.82% 214,560 21.08% 2,124 49.36% 72.47% 
Ours -9.9 -15830.8 -1.03% 234,966 23.09% 2,072 48.15% 74.91% 

superblue5 
NC -30.2 -19866.8 0.00% 928,619 100.00% 3,626 100.00% 100.00% 
WK -32.3 -20607.3 -3.73% 273,496 29.45% 2,251 62.08% 72.51% 
Ours -30.3 -19898.6 -0.16% 291,267 31.37% 2,355 64.95% 74.16% 

superblue3 
NC -18.9 -7892.9 0.00% 1,047,502 100.00% 4,251 100.00% 100.00% 
WK -19.7 -8584.5 -8.76% 266,706 25.46% 2,054 48.32% 72.48% 
Ours -18.9 -8106.1 -2.70% 262,588 25.07% 2,133 50.18% 74.14% 

superblue1 
NC -10.2 -6778.5 0.00% 1,047,502 100.00% 3,759 100.00% 100.00% 
WK -10.5 -7825.5 -15.45% 262,261 25.04% 2,052 54.59% 72.47% 
Ours -10.2 -7334.7 -8.21% 255,708 24.41% 2,104 55.97% 74.87% 

superblue7 
NC -19.4 -12531.2 0.00% 1,702,650 100.00% 6,482 100.00% 100.00% 
WK -20.9 -13591.3 -8.46% 362,256 21.28% 3,427 52.87% 72.48% 
Ours -19.2 -12757.0 -1.80% 379,577 22.29% 3,341 51.54% 74.31% 

superblue10 
NC -48.7 -151000.0 0.00% 1,660,396 100.00% 6,189 100.00% 100.00% 
WK -42.7 -139000.0 7.95% 379,246 22.84% 3,210 51.87% 72.48% 
Ours -42.3 -141000.0 6.62% 408,500 24.60% 3,495 56.47% 74.25% 

Average 
NC 

  
0.00% 

 
100.00% 

 
100.00% 100.00% 

WK 
  

-10.88% 
 

23.62% 
 

53.45% 72.48% 
Ours 

  
-1.95% 

 
24.58%  54.03% 74.48% 

 

[2]  
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