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Abstract—The advancement of interconnected smart grids
brings both vast opportunities and heightened cybersecurity
risks. Data-driven defense mechanisms, though devised as a shield
against these threats, can fall prey to poisoning attacks. We delve
into regression settings, underscoring the imperative to fortify de-
fenses against a spectrum of poison ratios, notably those exceed-
ing 0.5—a topic scarcely addressed in prior studies. Recognizing
the susceptibilities of smart grids and their manipulable sensors,
we exploit the very intent of poisoning attacks—compromising
model accuracy—as our defense mechanism. Our proposed
bilevel-optimization framework adeptly discerns between poi-
soned and authentic data based on model residuals, achieving
impressive precision and recall. Once sanitized, this model is
adaptable for varied applications. Comprehensive evaluations on
different smart grid datasets, pitted against myriad poisoning
schemes, validate our methodology’s edge over existing methods.
We also shed light on the implications of model misspecification
stemming from temporal autocorrelation, a common feature in
IoT and smart grid data.

Index Terms—Adversarial machine learning, poisoning attack,
kernel ridge regression, regression, IoT cybersecurity

I. INTRODUCTION

Internet-of-things (IoT) and sensor technology transform
power systems into smart grids, integrating renewable energy
and optimizing power consumption [1]. These grids function
as interconnected systems that depend heavily on communi-
cation channels for data flow among generators, sensors, and
controllers [2]. However, the interconnectedness exposes them
to potential threats that compromise their security, resulting in
extensive damages [3]. Robustness in these infrastructures is
a priority.

A challenge in IoT and smart grid security is the integrity
of data acquired from sensors. Sensors serve as primary
data sources and are prone to adversarial attacks or noise
interference. Therefore, machine learning (ML) detectors are
often deployed to verify incoming data. Yet, there’s a notable
weak point in data-driven detectors: they can fall victim to
poisoning attacks, where the training data collected from
sensors are corrupted by environmental noise or intentional
adversaries [4]. Defense measures against outliers or poisoning
attacks in the training data encompass: 1) Input space de-
tection, which leans on robust statistical measures, although
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often neglecting higher-order nuances [5]. 2) Latent space
techniques, specifically designed for neural networks [6]. 3)
Prediction signatures, utilizing tools like saliency maps but
largely confined to classification tasks such as image recog-
nition [7]. 4) Other methods, including majority voting and
differential privacy, but generally assuming a small poisoning
ratio [8]. A review of existing literature highlights two primary
challenges.

Poisoning attacks in regression settings. While much re-
search centers on classification settings [4], [9], the criticality
of regression in smart grids—for tasks like demand predic-
tion and state estimation—presents unique challenges. Unlike
classification that targets decision boundaries, poisoning in
regression discreetly adjusts predictions, affecting the model’s
gradient. Such nuanced alterations not only challenge defenses
but also escalate risks, since minor deviations in smart grids
can result in significant inefficiencies or failures.

Defense against high poison ratios. Diving deeper, an often-
overlooked aspect is the criticality of the poison ratio. The
majority of studies limit the effectiveness of their methods
when the poison ratio is below 0.05 [5] or 0.2 [10]. Yet,
our findings indicate a deterioration in performance as this
ratio nears 0.5 (refer to Table II). It’s acknowledged that
M-estimators [11] have an upper limit breakdown point of
0.5 [12]. Although [13] explores high poison ratios in linear
regression, it presupposes knowledge of the exact poison
ratio and relies on specific distributional assumptions—often
unrealistic in practice. Given the diverse data sources in smart
grids, from users to smart meters and IoT devices, the potential
for external tampering grows. A high poison ratio (potentially
beyond 0.5) prompts a reexamination of current methodolo-
gies. In an environment where the signal masquerades as
noise (and vice versa), reliance on conventional techniques
becomes questionable. If left unchecked, models derived from
such tainted datasets risk significant inaccuracies, potentially
jeopardizing grid operations and efficacy.

Contributions & key insights: At their core, poisoning
attacks seek to disrupt model accuracy, drastically skewing
predictions. This skewing, paradoxically, lights the way to
counter these attacks. Generally, a model aligned with normal
data will present variances consistent with typical statistical
behaviors. However, a poisoned dataset disrupts this behavior,
serving as a red flag. Instead of fixating on input features,
which can naturally vary, our focus is on the model’s residuals.
Our observations underscore a compelling dichotomy: models
optimized for normal data struggle with poisoned datasets and
vice versa, drawing a clear line between them.
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Building upon this insight, our methodology tentatively
divides data into hypothetical ‘normal’ and ‘poisoned’ cate-
gories. By training a model to one subset and measuring its er-
ror on the other, an iterative refinement of this categorization is
possible. This approach is especially adept at navigating high
poison ratios in regression contexts. Technically, we employ a
bilevel optimization strategy: the inner level focuses on “model
training” (e.g., kernel ridge regression), while the outer level
seeks to optimize the partition to maximize error differences.
We also consider cases where poison ratios approach or exceed
0.5, using the list-decodable setting [13] for evaluation. Our
evaluation across diverse smart grid datasets, encompassing
various poison ratios and attack methods, indicates that our
approach consistently outperforms existing methodologies.
Notably, we sidestep the need of predetermined poison ratios,
aligning closer with realistic conditions. Compared to state-
of-the-art methods such as [10], our method distinguishes
between normal and poisoned data with high precision and
recall metrics. Beyond data partitioning, the resultant nonlinear
model, characterized by its low regression error, is suitable for
practical applications. If further model refinement is necessary,
the isolated normal dataset provides a reliable foundation.

The remainder of this paper is organized as follows: Sec.II
reviews relevant literature on attacks in smart grid systems and
the broader realm of robust machine learning. Our proposed
methodology is detailed in Sec.III. Experimental setups and
findings are shown in Sec.IV. The paper concludes in Sec. V.

II. RELATED WORK

Security challenges in IoT and smart grids have prompted
the development of data-driven detectors against various
threats. Random forest and neural networks have been ex-
plored for jamming attacks that disrupt wireless networks [14].
For electricity theft, wherein customers alter meter readings
to reduce bills, studies employ outlier detection [15] and
deep learning methods [16]. The data-centric nature of these
detectors makes them susceptible to poisoning attacks [17].
Neural networks, although promising, might not always be the
preferred choice. In contexts where computational resources
are limited or where model interpretability is crucial, the tilt
is towards more transparent models such as linear regression,
as seen in distributed energy management systems [18] and
smart home power monitoring [19].

Robust linear regression against poisoning attacks has re-
cently garnered attention, yet many works cap the poison ratio
at a mere 0.05 [5] or 0.2 [10] in their evaluations. Given the
open nature of smart grids and potential sensor tampering [20],
the training set can exhibit higher poison ratios. For example,
sensor tampering was evaluated with a poison ratio of up
to 0.7 in [21]. When the majority of a dataset is poisoned,
the list-decodable setting [13] produces multiple functions,
one aligning with the ground truth. In our study, we utilize
the list-decodable setting for poison ratios of 0.5 and above.
Moreover, while the bulk of existing literature assumes data
drawn independently from an inherent distribution, we explore
model misspecification stemming from autocorrelation in time
series data—a prevalent scenario where data originate from
sensor measurements.

III. METHODOLOGY

Let the dataset be denoted as D = {(xi, yi)i∈[n]}, where [n]
is shorthand for the set {1, ..., }. The features are represented
by X = {xi}ni=1 ∈ Rn×d and labels by Y = {yi}ni=1 ∈
Rn. We consider H as a Reproducing Kernel Hilbert Space
(RKHS) with kernel, k : Rd×Rd → R, such as the polynomial
or Radial Basis Function (RBF) kernel. The objective is to
identify a function f : Rd → R within H that yields minimal
prediction error for a given feature x amidst the presence of
poisons in D.

To crystallize our idea, we define N (w) = {i : wi = 1} as
the index set of hypothetical normal data, with each data point
i having a binary weight wi ∈ {0, 1}. Conversely, P(w) =
N (1 − w) = {i : wi = 0} denotes the index set for the
hypothetical poisoned data, being the complement to N (w).
While the hypothesis w ∈ {0, 1}n delineates the membership
sets, the tags of ‘normal’ or ‘poison’ merely represent dual
data facets; their true nature could be swapped. Within a list-
decodable setting, we can train a model using either N (w)
or P(w) data. Success is declared if one model proves to
be accurate. Typically, discerning between the poisoned and
normal datasets becomes straightforward upon examination.
Now, if we define L(f ;D, w) = 1

∥w∥1

∑
i∈N (w) ℓ

(
f(xi), yi

)
as the average error of model f evaluated on hypothetical
data defined by w, then f∗

w = argminf∈H L(f ;D, w) is the
model trained on this hypothetical normal set. We posit that
by identifying a hypothesis w, such that the model f∗

w, when
trained on the hypothetical normal set, maximizes the error
on the hypothetical poisoned set P(w), it becomes feasible to
separate the poisoned data from normal data, resulting in the
selection of a dependable model from either f∗

w or f∗
1−w.

Building upon the preceding theoretical discussion, we
present a bilevel optimization framework as follows:

max
{wi}n

i=1

1

∥1− w∥1

∑
i∈P(w)

(
yi − f∗

w(xi)
)2

s.t. f∗
w = argmin

f∈H

∑
i∈N (w)

(
yi − f(xi)

)2
+ λ∥f∥2H

wi ∈ {0, 1}, ∀i ∈ [n]
(1)

Within this framework, the inner level of (1) deduces the best
f∗
w from hypothetical normal data, whereas the outer level

seeks a w such that f∗
w maximizes the average residuals for

the hypothetical poisoned data. Given our focus on regression,
we employ squared loss for ℓ(·). Moreover, the norm ∥ · ∥H
linked to H, weighted by hyperparameter λ ∈ R+, serves to
regularize smoothness in f . This stems from the rationale that
genuine functions tend towards smoothness, in contrast to their
aberrant counterparts that may show pronounced fluctuations.

Continuous relaxation of the hypothesis vector. The for-
mulation given by (1) is essentially a mixed-integer quadratic
problem, which is NP-hard in general. In pursuit of computa-
tional tractability, we relax the discrete variable set {wi}ni=1 to
be real-valued within the interval [0, 1]. To provide even more
flexibility, we further extend their domain to R and subse-
quently apply the Sigmoid function: s(wi) = (1 + e−Twi)−1,
where T ∈ R+ acts as a temperature parameter, modulating
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the smoothness of s(·). Accordingly, the related formulation
can be written as:

max
{wi}n

i=1

1∑n
i=1

(
1− s(wi)

) n∑
i=1

(
1− s(wi)

)(
yi − f∗

w(xi)
)2

s.t. f∗
w = argmin

f∈H

n∑
i=1

s(wi)
(
yi − f(xi)

)2
+ λ∥f∥2H

wi ∈ R, ∀i ∈ [n]
(2)

Reduction to single-level optimization. Despite the con-
tinuous relaxation above, the computational complexity of a
bilevel optimization remains. Nevertheless, by invoking the
representer theorem [22], we can derive the unique optimal
solution for the inner level. Specifically, this solution can
be expressed as: f(x) =

∑n
i=1 αik(x, xi), where α =

{αi}ni=1 ∈ Rn. Substituting this expression into the inner
level of (2) to determine the optimal α∗ yields: α∗ =(
S(w)K + λI

)−1
S(w)Y , where S(w) is a diagonal matrix

with S(w)i,i = s(wi). Additionally, K ∈ Rn×n is the kernel
matrix defined such that Ki,j = k(xi, xj), and I is the identity
matrix.

Consequently, our bilevel optimization problem can be
reduced to a single-level optimization. By substituting f∗

w =∑n
i=1 α

∗
i k(x, xi) into the outer optimization, we can express

the problem in a vectorized form as:

max
w∈Rn

H(w) :=
1

Tr
(
I − S(w)

)((I − S(w)
) 1

2 (Y − Λ)
)2

,

(3)
where Λ := K

(
S(w)K+λI

)−1
S(w)Y and Tr(·) denotes the

trace operation.
The problem posed by (3) is a non-concave maximization

problem, lacking discernible structure. Consequently, we em-
ploy gradient ascent to solve it. The gradient of H(w) with
respect to wi is analytically derived as:
∂H(w)

∂wi
=

s′(wi)(
Tr

(
I − S(w)

))2

((
I − S(w)

) 1
2 (Y − Λ)

)2

+
1

Tr
(
I − S(w)

)(s′(wi)(−y2i + 2Λiyi − Λ2
i )

+
(
2(Λ− Y )⊤

(
I − S(w)

))
∂Λ
∂wi

)
,

(4)
where ∂Λ

∂wi
= K

(
S(w)K + λI

)−1
eis

′(wi)
(
e⊤i (Y − Λ)

)
, ei

is the canonical unit vector with the i-th entry being 1 and
others being 0, and s′(wi) is the derivative of s(wi). A detailed
derivation is in App. B.

Scalability via Random Fourier Features (RFF). To eval-
uate (4), we must compute both Λ and ∂Λ

∂wi
, which entails the

inversion of an n×n matrix
(
S(w)K+λI

)−1
. The complexity

of this inversion increases with the dataset’s size, presenting
a computational bottleneck intrinsic to kernel methods. To
address this, we utilize the RFF approximation [23], which
estimates shift-invariant kernels, encompassing the widely-
used RBF kernel defined by k(xi, xj) = exp(−γ∥xi− xj∥2),
where ∥ · ∥ denotes the Euclidean distance.

In the RFF approach, the Fourier transform of the ker-
nel is sampled randomly p times, and this sampling trans-
forms the raw data xi into a p-dimensional space. E.g.,

Algorithm 1 Gradient Ascent

Inputs: data X,Y , regularization hyperparameter λ, temper-
ture parameter T , number of samples for RFF approxima-
tion p, kernel function k, number of iterations for gradient
ascent t, learning rate β

Output: N (w̄),P(w̄), f∗
w̄, f

∗
1−w̄

1: Calculate the Fourier transform q of k
2: Draw p i.i.d. samples ω1, . . . , ωp from q and b1, . . . , bp

from Uniform(0, 2π)

3: Construct Z, whose i-th row is z(xi) =
√

2
p [cos(ω

⊤
1 xi +

b1), · · · , cos(ω⊤
p xi + bp)]

4: Initialize w(1) = 0
5: for j = 1, 2, . . . , t do
6: w(j+1) = w(j) + β∇wH(w(j))

// ∇wH(w(j)) is calculated according to (4)
7: end for
8: {w̄i}ni=1 ← Round {s(wi)}ni=1 to the nearest integer
9: N (w̄) = {i : w̄ = 1},P(w̄) = {i : w̄ = 0}

10: f∗
w̄(x) = z(x)⊤(Z⊤diag(w̄)Z + λI)−1Z⊤diag(w̄)Y

11: f∗
1−w̄(x) = z(x)⊤(Z⊤diag(1−w̄)Z+λI)−1Z⊤diag(1−
w̄)Y

12: return N (w̄),P(w̄), f∗
w̄, f

∗
1−w̄

z(xi) =
√

2
p

[
cos(ω⊤

1 xi + b1), · · · , cos(ω⊤
p xi + bp)

]⊤
, where

ωi ∼ q(ω), bi ∼ Uniform(0, 2π), and q(ω) is the Fourier
transform of the kernel. Leveraging Bochner’s Theorem and
defining Z as the n × p matrix with its i-th row given by
z(xi)

⊤, we can approximate K by ZZ⊤ (refer to [23] for a
comprehensive exposition). With RFF approximation and the
Woodbury identity, we can sidestep the necessity of inverting
an n× n matrix. To elucidate:

Λ = K(S(w)K + λI)−1S(w)Y
≈ ZZ⊤(S(w)ZZ⊤ + λI)−1S(w)Y
= Z(Z⊤S(w)Z + λI)−1Z⊤S(w)Y := Zθ.

(5)

This approach grants us the flexibility to manage computa-
tional complexity directly since the operation revolves around
inverting a p × p matrix. A larger p enhances approximation
accuracy but concurrently increases computational cost.

Algorithm. The outlined procedure is detailed in Alg. 1.
Upon convergence of the gradient ascent, s(wi) serves as an
indicator of the contribution of the i-th data point towards
the learning of f∗

w. Specifically, when s(wi) approaches 1, it
implies that the data point (xi, yi) has notably influenced the
learning of f∗

w. Given that the choice to use a data point for
f∗
w is inherently binary, we round s(wi) to the nearest integer,

either 0 or 1, and denote the result as w̄i. This step enables
us to discern and segregate the learned normal dataset, N (w̄),
from the complementary set of anomalous or poisoned data,
P(w̄).

IV. EXPERIMENTS

Datasets. The Stability dataset [24] examines a decentral-
ized four-node electrical system’s local stability, focusing on
11 features such as participant reaction time and nominal
power consumption. The goal is to predict the maximal real
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part of a characteristic equation root, where positive indi-
cates instability and negative denotes stability. The DERMS
dataset [18] revolves around a smart grid’s Distributed En-
ergy Resource Management System (DERMS). It logs mea-
surements sent to and actions from the DERMS controller,
covering features including real and reactive powers, and each
node’s maximum inverter generation limit. Predictions from
this dataset assist in detecting deviations in control actions, sig-
naling potential intrusions. The House dataset [25] describes
a low-energy home’s electricity usage through 28 features
like kitchen humidity and local weather data. It forecasts
the household’s total appliance energy consumption, aiding
in anomaly detection or demand management. Lastly, the
CCPP dataset [26] delves into a Combined Cycle Power Plant,
capturing 4 features such as ambient temperature/humidity and
exhaust vacuum. The objective is to predict the plant’s net
hourly energy output.

Poisoning Attacks. We outline the data poisoning attacks
used in our experiments. Given a normal dataset Dn, their goal
is to construct the resultant dataset D = (Dn \Dt)∪Dp,Dt ⊂
Dn, with Dt representing tampered data from Dn and Dp as
the injected poisons. The poison ratio is given by |Dp|

|D| .
In the Optimization-Based Injection [27], a bilevel optimiza-

tion framework crafts Dp. The attacker, knowing dataset D′

(similar to Dn) and loss function ℓ(·), maximizes the average
loss on a validation set using an optimal model from the
inner level. This model represents the impact of injecting Dp

into Dn. In tests, we set D′ = Dn, implying full attacker
knowledge. The Flip method [10] also uses a similar dataset,
but without requiring access to the loss function. Poisons are
crafted based on a feasibility domain of the labels to avert
suspicion, and each poison corresponds to data points in D′.
Like before, D′ = Dn in our tests, which allows us to consider
a poison ratio of 0.5. In the Additive Attack [21], labels in
Dn are modified by adding a fixed value, δa = 2 in our tests.
This misleads the model to predict higher values. Lastly, in
Noise Corruption, labels in Dn are altered using values from a
distribution, specifically δn ∼ N(0, 0.2) in our tests, reflecting
data acquisition noise.

The first two attacks maintain Dn while introducing extra
poisons (Dt = {ϕ}), which require database access. However,
such attacks are not always possible, such as the case when
the number of data entries is pre-set. On the other hand, the
last two attacks directly change the labels in Dn (Dt ̸= {ϕ}),
which can happen during data acquisition.

Baseline Defenses. iTRIM [10] iteratively refines the func-
tion f by focusing on data subsets with the smallest residuals
across different poison ratios. Huber loss [11] combines the
sum of squares loss and sum of absolute values loss. Lastly,
Sever [5], assuming the true poison ratio, filters out data points
with notably strong projected gradients on the leading singular
vector of the gradient matrix.

Setup. The proposed method is implemented in Python
while the baseline defenses are from the sklearn package [28]
or the authors [5], [10] respectively. For each dataset, we
randomly select 8, 000 to 10, 000 data points as Dn and use
the rest as the test set. Both the features and labels are scaled
to the range [0, 1]. The regularization hyperparameter λ is set

to 0.01, the temperature T to 0.5, the number of draws for
RFF p to 200, the number of iterations to 3500, the learning
rate β to 0.01, and the RBF kernel as k.

Evaluation Metrics. To evaluate the partition of D into
poisons and normal data, we define poisons as positives,
normal data as negatives, and calculate the precision and
recall. Denote true positives, false positives, true negatives,
and false negatives as TP, FP, TN, FN, respectively. Precision
and recall can be calculated as follows. precision = TP

TP+FP and
recall = TP

TP+FN . Moreover, we evaluate the model learned from
the partitioned normal data on the test set using mean squared
error (MSE). In the following, we refer to MSE as the test
MSE unless stated otherwise.

A. Poison Ratio Smaller Than 0.5

In this section, we vary the poison ratio from 0 to 0.4.
Does the proposed method partition data more effec-

tively? High precision signifies a reduced chance of erro-
neously classifying normal data as poisoned, while high recall
indicates a reduced chance of mistakenly identifying poisoned
data as normal. Both these measures are indicative of effective
data partitioning. In Table I, we juxtapose the precision and
recall of our approach with that of iTRIM. For the additive
attack, our method consistently delivers nearly 100% precision
and recall across various datasets and poison ratios. We also
observe substantially higher precision and recall for Flip and
Optimization-based attacks using our approach. For noise
corruption scenarios, the precision and recall metrics for both
methods drop in comparison to other attack types. This decline
can be attributed to the fact that the noise, δn, is sampled
from a distribution N(0, 0.2). Consequently, if a sampled noise
has a small magnitude, it does not significantly impact the
poisoning effect on f .

Does a better partition lead to a better model? We
show the test MSEs of the model learned from the oracle and
baseline methods in Fig. 1. The oracle is the data partition
with 100% precision and recall. In the following, we discuss
the case when the poison ratio is above and at zero separately.

At poison ratios above zero, our method has the smallest
MSEs compared with the baselines except for under Flip and
additive attack on DERMS. The reason is that DERMS is
heavily autocorrelated (See App. A for the autocorrelation
profile of each dataset.). This model misspecification brings
about the fact that higher precision and recall don’t necessarily
lead to lower MSE of the resultant model. iTRIM achieves
lower MSEs by sacrificing precisions as shown in Table I.
By using kernel ridge regression, we assume the data follow
y = z(x)⊤θ+ϵ, where ϵ denotes the error that includes model
misspecification error and i.i.d. noise. According to the Gauss-
Markov theorem [29], linear regression is only the best linear
unbiased estimator (BLUE) when ϵ is uncorrelated; otherwise,
it leads to inflated MSEs. Therefore, by removing normal
data with high model misspecification errors, iTRIM achieves
lower MSEs. When the sifted normal data is used for fitting
sophisticated downstream models, a lower precision may lead
to degraded performance. Note that for a fair comparison, we
leave the poison ratio parameter in Sever [5] as default in its
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TABLE I: Precision / Recall (%) at poison ratios smaller than 0.5

Stability DERMS
Flip Opt Add Noise Flip Opt Add Noise

ratio Ours iTRIM Ours iTRIM Ours iTRIM Ours iTRIM Ours iTRIM Ours iTRIM Ours iTRIM Ours iTRIM
0.1 100/100 93.2/100 99.9/100 93.2/100 99.9/100 93.2/100 35.2/67.8 83.8/32.3 85.5/96.7 63.3/96.6 70.4/95.6 62.6/95.6 100/100 65.5/100 14.1/6.4 34.3/31.3
0.2 100/100 96.9/100 100/100 96.9/100 100/100 96.9/100 60.4/60.4 94.0/26.6 98.0/97.9 80.8/97.9 92.0/96.0 78.9/95.7 100/100 82.5/100 24.8/5.7 52.3/28.0
0.3 100/100 98.2/100 100/100 98.2/100 100/100 98.2/100 78.2/54.7 97.3/24.0 96.4/98.1 88.3/98.1 95.3/90.6 88.2/95.4 100/99.9 87.7/100 34.8/5.5 64.1/26.3
0.4 100/100 10.0/7.4 100/99.9 98.8/100 100/100 98.8/100 87.3/49.7 98.6/22.4 97.8/97.8 99.6/18.5 97.5/94.0 92.7/95.4 100/100 92.6/100 45.9/5.5 73.8/25.5

House CCPP
Flip Opt Add Noise Flip Opt Add Noise

ratio Ours iTRIM Ours iTRIM Ours iTRIM Ours iTRIM Ours iTRIM Ours iTRIM Ours iTRIM Ours iTRIM
0.1 98.7/99.9 72.4/99.9 90.9/98.8 80.3/98.7 99.9/100 81.4/100 42.4/1.4 46.7/26.4 99.1/100 93.2/100 98.0/100 93.2/100 100/100 93.2/100 90.9/33.3 93.2/18.4
0.2 99.2/100 91.4/100 98.0/99.2 90.6/99.2 100/100 91.4/100 65.5/1.0 67.0/24.9 99.8/100 96.9/100 99.7/99.9 96.9/100 100/100 96.9/100 97.0/25.2 97.1/27.5
0.3 99.6/100 95.2/100 99.8/99.2 94.4/99.2 100/100 95.2/100 70.4/0.7 76.2/23.1 99.9/99.9 98.2/100 99.8/100 98.1/100 100/100 98.2/100 93.2/53.1 98.2/24.3
0.4 99.7/99.1 99.8/89.5 100/99.2 96.3/99.2 100/100 97.1/100 80.8/0.5 84.2/22.6 100/99.9 99.2/84.9 99.9/97.7 99.9/99.3 100/100 98.8/100 97.8/43.9 98.7/22.5
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Fig. 1: Test MSEs at poison ratios smaller than 0.5. A partition with higher precision and recall leads to lower test MSE if little or no model misspecification
exists. Lower test MSEs by iTRIM on DERMS are achieved by sacrificing precision because of model misspecification.

original implementation, which is 0.3. Hence, a drop in MSE
is observed at 0.3 in several cases.

At a poison ratio of 0, corresponding to scenarios where
no poisoning attack has occurred, the FPs and the associated
MSEs are detailed in Table III. Huber is omitted from this
discussion as it doesn’t have the capability to filter out poisons.
Without model misspecification, a lower FP count typically
results in reduced MSEs. This relationship is evident in the
cases of Stability and CCPP, where iTRIM reports 0 FP.
However, in scenarios exhibiting significant autocorrelation,
such as DERMS, having non-zero FPs can yield even lower
MSEs than the oracle. This behavior sharply contrasts with the
instances where DERMS registers a high precision but elevated

MSE when the poison ratio exceeds 0. One potential reason
for this observed behavior is that the outer level of equation
(2) can result in a ‘divide-by-zero’ scenario if wi = 1 for all
i ∈ [n]. Consequently, at a poison ratio of 0, our methodology
may incline towards omitting normal data points that exhibit
pronounced model misspecification errors. This tendency, in
turn, results in non-zero FPs but minimized MSEs.

B. Poison Ratio at 0.5

Is our method directly applicable to the list-decodable
setting? When the poison ratio is exactly at 0.5, an inductive
bias is necessary because there are an equal number of poisons
and normal data. Our insight is that effective poisons are
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TABLE II: Test MSEs at 0.5 poison ratio
Stability DERMS House CCPP

λ = 0.01
λ Ours

Oracle
MSE

λ = 0.01
λ Ours

Oracle
MSE

λ = 0.01
λ Ours

Oracle
MSE

λ = 0.01
λ Ours

Oracle
MSEiTRIM Huber Sever Ours iTRIM Huber Sever Ours iTRIM Huber Sever Ours iTRIM Huber Sever Ours

Flip 28.48 9.39 23.50 3.16 10 0.79 0.45 51.39 18.20 65.89 25.01 50 1.44 1.16 29.35 21.35 58.46 8.78 100 0.69 0.68 32.31 12.10 29.45 0.56 50 0.34 0.34
Opt 27.41 10.44 23.33 1.83 0.1 1.54 0.45 52.17 18.92 62.74 2.39 100 1.62 1.16 47.97 21.41 44.46 22.51 0.1 1.32 0.68 43.93 12.74 37.66 0.50 0.1 0.43 0.34
Add 148.2 102.9 0.49 127.2100 0.47 0.46 251.0 99.07 158.0 7.89 100 1.16 1.15 208.3 103.0 179.3 139.0100 0.69 0.69 330.1 100.8 171.9 56.6 100 0.34 0.34

Noise 0.50 0.47 180 0.50 0.1 0.47 0.46 1.04 1.05 1.16 1.06 0.1 1.04 1.15 0.75 0.74 0.79 0.76 0.1 0.73 0.69 0.34 0.35 0.34 0.34 0.1 0.34 0.34

TABLE III: False positives and test MSEs of each method at 0 poison ratio
iTRIM Sever Ours Oracle

MSE
Training Set

SizeFP MSE FP MSE FP MSE
Stability 0 0.449 6072 0.468 253 0.470 0.449 8000
DERMS 652 1.055 6680 1.159 379 1.025 1.160 8800
House 377 0.723 7442 0.747 101 0.695 0.681 9800
CCPP 0 0.338 6831 0.344 31 0.339 0.338 9000

0.0

0.5

1.0
original data(a) attacked data(b)

0.0

0.5

1.0
λ = 0.01 partition(c) λ = 55 partition(d)

N (w̄) P(w̄)

0.0 0.5 1.0

0.0

0.5

1.0
λ = 0.01 residuals(e)

0.0 0.5 1.0

λ = 55 residuals(f)

x

y

ftrue Dp Dn fo

f∗w̄ small large

Fig. 2: Visualization of synthetic data to illustrate the importance of
inductive bias at 0.5 poison ratio. When λ is increased from 0.01 to 55
to encourage smoothness, the partition becomes more ideal and the resultant
model captures the true function better.

inevitably far from the normal data. Therefore, smoothness
should be encouraged to prevent learning from portions of
poisons and normal data.

We visualize the importance of inductive bias with a 1-
dimensional synthetic dataset generated by drawing 10, 000
random samples in the range x ∈ [−3, 2] from the noisy
function y = x2 + sin(x3) + exp(x + 1) − 2 + ξ, where
ξ ∼ N(0, 0.5). Both x and y are then scaled to [0, 1]. Among
the 10, 000 data points, 8000 are used as Dn and the rest as
the test set. Dn and the true function ftrue are visualized in
Fig. 2(a). Next, Flip creates Dp of size 8000, resulting in a
0.5 poison ratio in Fig. 2(b). We also show the oracle model
fo with λ = 0.01, whose test MSE is 0.085.

Fig. 2(c) visualizes N (w̄) and P(w̄) that our proposed
method produces when λ = 0.01. An ideal partition in the
list-decodable setting is either of the following cases: (i) wi ∈
N (w̄) iff wi ∈ (Dn\Dt), or (ii) wi ∈ P(w̄) iff wi ∈ (Dn\Dt).
Nevertheless, in Fig. 2(c), both the poisons and the normal
data are divided into sections by the partition. We further
sample along the x axis and plot f∗

w̄(z(x)) in Fig. 2(e), along
with 1000 data points in N (w̄) with the largest and smallest
residuals respectively. As illustrated, f∗

w̄ with λ = 0.01 is a
lot more wiggly than ftrue because a highly wiggly function

at 0.5 poison ratio that oscillates between poisons and normal
data maximizes the outer objective function in (2). The test
MSE in this case is 27.79, which is highly influenced by the
poisons. Next, we increase λ to encourage a smooth f∗

w̄. In
Fig. 2(d), we set λ = 55 on line 6 in Alg. 1 to produce a
more ideal partition. Subsequently, f∗

w̄ is learned from N (w̄),
setting λ = 0.01 on line 10 in Alg. 1 to compare with the test
MSE from fo. The test MSE is greatly reduced from 27.79
to 0.093 and the resultant f∗

w̄ captures the true function much
better as shown in Fig. 2(f).

Does the insight transfer to high-dimensional data? We
attack the datasets at 0.5 poison ratio and compare the test
MSEs of different defense methods. First, λ is set to 0.01 and
the corresponding MSEs are presented in Table II. To discern
which of f∗

w̄ and f∗
1−w̄ learns the normal data, a small set of 10

normal data points is partitioned from Dn to form a validation
set. We only include the test MSE of f∗

w̄ or f∗
1−w̄, whichever

has the smaller validation MSE. The results show that without
an inductive bias, at λ = 0.01, all attacks increase the MSEs
by a large margin, with one exception being noise corruption.
The reason is similar to as mentioned in Sec. IV-A. Some δn
may have small magnitudes, resulting in ineffective poisons.

Then, inductive bias is introduced by increasing λ on line 6
in Alg. 1. Specifically, we choose λ among {0.1, 10, 50, 100}
and select the one that has the lowest validation MSE at
λ = 0.01. Note that λ on line 10 remains 0.01. As Table II
shows, our test MSEs decrease to a more tolerable level
for all cases. Results from other methods under different
λ’s are omitted because they either are insensitive to λ or
produce unsatisfactory results compared with ours. The reason
iTRIM yields unsatisfactory performance is that it initializes
by learning f on the entire D. This results in large residuals
on both poisons and normal data at 0.5 poison ratio

C. Poison Ratio Larger Than 0.5

Finally, in this section, we discuss when the poison ratio is
larger than 0.5. As in Sec. IV-B, the list-decodable setting is
adopted, and the final output function is chosen as the one with
the smaller validation MSE. Moreover, since over half of the
data are poisons, f∗

w in (2) tends to fit the poisons instead of the
normal data. We thus use the validation set to also determine
the appropriate λ to set on line 6 in Alg. 1. Table V shows the
configuration for each dataset and attack. We do not include
Flip because it supports at most 0.5 poison ratio. The same
list-decodable setting and search for appropriate λ are applied
to iTRIM and Sever. However, λ = 0.01 for all of Huber’s
experiments since it does not support filtering out poisons.

Does our method still yield better partitions at poison
ratios larger than 0.5? We show the precision and recall of
our method and iTRIM in Table IV. In several cases other
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TABLE IV: Precision / Recall (%) at poison ratios larger than 0.5

Stability DERMS
Opt Add Noise Opt Add Noise

ratio Ours iTRIM Ours iTRIM Ours iTRIM Ours iTRIM Ours iTRIM Ours iTRIM
0.6 71.2/96.0 74.2/73.6 100/100 100/99.2 96.5/42.1 99.2/20.3 92.2/96.8 96.4/94.5 100/100 100/94.7 66.4/6.0 86.0/23.9
0.7 74.5/99.5 82.3/73.5 100/100 100/99.2 98.1/38.8 99.5/19.6 95.8/95.9 98.1/94.6 100/100 100/95.2 75.3/6.0 90.0/23.2
0.8 82.2/99.9 89.3/74.4 100/100 100/99.2 99.0/36.3 99.7/19.1 95.7/95.4 99.5/94.2 100/100 100/94.7 85.9/6.2 94.5/22.9
0.9 91.5/99.4 95.2/71.4 100/100 100/99.2 99.6/33.7 99.9/18.5 97.0/95.3 99.9/94.0 100/100 100/94.2 93.2/5.8 97.2/22.3

House CCPP
Opt Add Noise Opt Add Noise

ratio Ours iTRIM Ours iTRIM Ours iTRIM Ours iTRIM Ours iTRIM Ours iTRIM
0.6 98.7/99.2 100/99.2 99.6/100 100/98.0 93.0/40.6 92.8/21.3 79.3/99.4 92.3/90.5 100/100 100/99.2 98.9/42.8 99.5/20.4
0.7 98.9/99.3 100/99.2 100/100 100/97.8 95.2/37.9 95.6/19.6 83.9/99.5 95.6/91.0 100/100 100/99.2 99.4/39.7 99.7/19.6
0.8 99.6/99.3 100/99.2 100/100 100/97.7 97.2/35.0 97.6/20.3 88.9/99.3 97.4/90.8 100/100 100/99.2 99.7/36.6 99.8/19.0
0.9 99.9/99.2 100/99.2 100/99.9 100/95.8 98.8/32.7 98.8/18.3 94.5/98.9 99.0/90.2 100/100 100/99.2 99.9/34.1 99.9/18.5
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Fig. 3: Test MSEs at poison ratios larger than 0.5. According to Table IV, nearly 100% precision and recall on additive attack lead to the lowest test
MSE. High recall benefits datasets without model misspecification (Stability and CCPP), while high precision benefits datasets with model misspecification
(DERMS and House).

TABLE V: λ configurations at poison ratios larger than 0.5

Stability DERMS House CCPP
Ours iTRIM Sever Ours iTRIM Sever Ours iTRIM Sever Ours iTRIM Sever

Opt 10−3 10−2 10−3 10−3 10−2 10−3 10−2 10−2 10−2 10−2 10−2 10−1

Add 10−2 10−3 10−2 10−2 10−2 10−3 10−2 10−3 10−2 10−2 10−3 10−1

Noise10−1 10−2 10−1 10−1 10−2 10−1 10−2 10−2 10−1 10−3 10−2 10−2

than additive attack, where we have nearly perfect precision
and recall, iTRIM yields higher precision but lower recall than
our method. iTRIM’s behavior of mistakenly excluding data
in learning f was also observed in Table III, where iTRIM
has generally higher recall than precision. Now that f learns
the distribution of the poisons instead of the normal data, the
poisons not captured by f lead to lower recalls. On the other
hand, our method is able to include more poisons in learning
f but at the same time mistakenly includes more normal data
in learning f , which leads to lower precisions.

How do precision and recall affect resultant models
in the presence and absence of model misspecification?
We show the test MSEs in Fig. 3. It appears that when
model misspecification exists, the MSEs benefit from iTRIM’s
method. Specifically, iTRIM has lower MSE on DERMS
and House under optimization-based injection. However, our
method achieves lower MSEs on Stability and CCPP. Nearly
perfect precision and recall under additive attack also give us

the lowest MSE across all datasets. As for noise corruption,
Huber achieves the lowest MSE on House, iTRIM on DERMs,
and our method on the datasets where there is no model mis-
specification. Furthermore, since optimization-based injection
creates poisons in addition to the normal data, D becomes
10× larger at 0.9 poison ratio. As a result, Sever runs out
of memory on House at poison ratio 0.8 and all datasets at
poison ratio 0.9.

V. CONCLUSION

In this research, we presented a bilevel optimization-based
framework to counteract poisoning attacks targeting data-
driven smart grid applications. Notably, our approach achieves
high precision and recall in partitions for poison ratios below
0.5, culminating in models with the lowest test MSE, espe-
cially when no model misspecification exists. With an incorpo-
rated smoothness inductive bias, our method excels, registering
the lowest test MSE at a 0.5 poison ratio. For elevated
poison ratios, our method prioritizes recall, still benefiting
the subsequent model in scenarios without misspecification.
We further explored the impact of model inaccuracies due to
autocorrelation across varied poison ratios. Looking forward,
adapting the bilevel optimization for autoregressive models
stands as a promising avenue to eliminate model discrepancies.
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Fig. 4: Autocorrelation function of the residuals of each dataset.

APPENDIX A
AUTOCORRELATION IN THE DATASETS

For each dataset, we plot the autocorrelation function of
the training residuals after fitting a kernel ridge regression
model up until lag 50 in Fig. 4. The figure shows that
Stability and CCPP are free of autocorrelation while House
and DERMS are autocorrelated. This indicates the existence of
model misspecification, where our kernel ridge regression does
not capture the interaction between data points of different
time stamps. In fact, any non-autoregressive model fails to
capture autocorrelation.

APPENDIX B
DERIVATION OF

∂H(W )
∂wi

Since H(w) = 1
Tr(I−S(w)) (Y

⊤(I − S(w))Y − 2Λ⊤(I −
S(w))Y +Λ⊤(I−S(w))Λ), we take the derivative with respect
to wi for each term, and denote s′(wi) := s(wi)(1− s(wi)).

∂
∂wi

1
Tr(I−S(w)) = s′(wi)

(Tr(I−S(w)))2
∂

∂wi
Y ⊤(I − S(w))Y = −y2i s′(wi)

∂
∂wi
− 2Λ⊤(I − S(w))Y = −2∂Λ⊤

∂wi
(I − S(w))Y

+ 2Λ⊤(eis
′(wi)e

⊤
i )Y

∂
∂wi

Λ⊤(I − S(w))Λ = ∂Λ⊤

∂wi
(I − S(w))Λ

− Λ⊤eis
′(wi)e

⊤
i Λ

+ Λ⊤(I − S(w)) ∂Λ
∂wi

.

(6)

To derive ∂Λ
∂wi

, let ∆ := (S(w)K + λI).
∂

∂wi
Λ = ∂

∂wi
K(S(w)K + λI)−1S(w)Y

= K(∂∆
−1

∂wi
S(w)Y +∆−1 ∂S(w)

∂wi
Y )

= K(−∆−1(eis
′(wi)e

⊤
i K)∆−1S(w)Y

+∆−1eis
′(wi)e

⊤
i Y )

= −K∆−1eis
′(wi)e

⊤
i Λ +K∆−1eis

′(wi)e
⊤
i Y

= K(S(w)K + λI)−1eis
′(wi)(e

⊤
i (Y − Λ)).

(7)
Putting it all together, we have 4.
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